Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSF-led team discovers cause of rare disease

19.12.2011
Childhood disorder called PKD linked to genetic mutations

A large, international team of researchers led by scientists at the University of California, San Francisco has identified the gene that causes a rare childhood neurological disorder called PKD/IC, or "paroxysmal kinesigenic dyskinesia with infantile convulsions," a cause of epilepsy in babies and movement disorders in older children.

The study involved clinics in cities as far flung as Tokyo, New York, London and Istanbul and may improve the ability of doctors to diagnose PKD/IC, and it may shed light on other movement disorders, like Parkinson's disease.

The culprit behind the disease turns out to be a mysterious gene found in the brain called PRRT2. Nobody knows what this gene does, and it bears little resemblance to anything else in the human genome.

"This is both exciting and a little bit scary," said Louis Ptacek, MD, who led the research. Ptacek is the John C. Coleman Distinguished Professor of Neurology at UCSF and a Howard Hughes Medical Institute Investigator.

Discovering the gene that causes PKD/IC will help researchers understand how the disease works. It gives doctors a potential new way of definitively diagnosing the disease by looking for genetic mutations in the gene. The work may also shed light on other conditions that are characterized by movement disorders, including possibly Parkinson's disease.

"Understanding the underlying biology of this disease is absolutely going to help us understand movement disorders in general," Ptacek said.

About the Disease

PKD/IC strikes infants with epileptic seizures that generally disappear within a year or two. However, the disease often reemerges later in childhood as a movement disorder in which children suffer sudden, startling, involuntary jerks when they start to move. Even thinking about moving is enough to cause some of these children to jerk involuntarily.

The disease is rare, and Ptacek estimates strikes about one out of every 100,000 people in the United States. At the same time, the disease is classified as "idiopathic"—which is just another way of saying we don't really understand it, Ptacek said.

If you take an image of the brain by MRI, patients with the disease all look completely normal. There are no injuries, tumors or other obvious signs that account for the movements—as is often the case with movement disorders. Work with patients in the clinic had suggested a genetic cause, however.

"Sometimes we trace the family tree, and lo and behold, there is a history of it," said Ptacek. In the last several years, he and his colleagues have developed a large cohort of patients whose families have a history of the disease.

The new research was based on a cohort of 103 such families that included one or more members with the disease. Genetic testing of these families led to the researchers to mutations in the PRRT2 gene, which cause the proteins the gene encodes to shorten or disappear entirely in the brain and spinal cord, where they normally reside.

One possible explanation for the resulting neurological symptoms, the researchers found, relates to a loss of neuronal regulation. When the genetic mutations cause the gene products to go missing, the nerve cells where they normally appear may become overly excited, firing too frequently or strongly and leading to the involuntary movements.

The article, "Mutations in the Gene PRRT2 Cause Paroxysmal Kinesigenic Dyskinesia with Infantile Convulsions" by Hsien-Yang Lee, Yong Huang, Nadine Bruneau, Patrice Roll, Elisha D.O. Roberson, Mark Hermann, Emily Quinn, James Maas, Robert Edwards, Tetsuo Ashizawa, Betul Baykan, Kailash Bhatia, Susan Bressman, Michiko K. Bruno, Ewout R. Brunt, Roberto Caraballo, Bernard Echenne, Natalio Fejerman, Steve Frucht, Christina A. Gurnett, Edouard Hirsch, Henry Houlden, Joseph Jankovic, Wei-Ling Lee, David R. Lynch, Shehla Mohammed, Ulrich Meuller, Mark P. Nespeca, David Renner, Jacques Rochette, Gabrielle Rudolf, Shinji Saiki, Bing-Wen Soong, Kathryn J. Swoboda, Sam Tucker, Nicholas Wood, Michael Hanna, Anne M. Bowcock, Pierre Szepetowski, Ying-Hui Fu and Louis J. Ptacek appears in the January 26, 2012 issue of Cell Reports. The article can be accessed online at: http://www.cell.com/cell-reports/fulltext/S2211-1247%2811%2900006-4

In addition to UCSF, authors on this study are affiliated with the Université de la Méditerranée in Marseille, France; Washington University School of Medicine in Saint Louis, MO; the University of Florida in Gainesville, FL; Istanbul University in Turkey; University College London; Beth Israel Medical Center in New York; the Queen's Medical Center in Honolulu, HI; the University of Groningen in the Netherlands; Juan P. Garrahan Pediatric Hospital in Buenos Aires, Argentina; Hôpital Gui de Chauliac in Montpellier, France; Mount Sinai Medical Center in New York; Hôpitaux Universitaires de Strasbourg in France; Baylor College of Medicine in Houston; the National Neuroscience Institute in Singapore; Children's Hospital of Philadelphia; Guy's Hospital in London; Justus-Liebig-Universität in Giessen, Germany; Rady Children's Hospital in San Diego; the university of California, San Diego; the University of Utah in Salt Lake City; the Université de Picardie Jules Verne in Amiens, France; Kanazawa Medical University in Ishikawa, Japan; the National Yang-Ming University School of Medicine in Taipei, Taiwan; Taipei Veterans General Hospital in Taiwan; the International Paroxysmal Kinesigenic Dyskinesia/Infantile Convulsions Collaborative Working Group; and the Juntendo University School of Medicine in Tokyo.

This work was funded by the Dystonia Medical Research Foundation, the Bachmann-Strauss Dystonia Parkinson Foundation, the National Institutes of Health, the Sandler Neurogenetics Fund, ANR, INSERM and the Howard Hughes Medical Institute.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Studies and Analyses:

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Lightning, with a chance of antimatter

24.11.2017 | Earth Sciences

A huge hydrogen generator at the Earth's core-mantle boundary

24.11.2017 | Earth Sciences

Scientists find why CP El Niño is harder to predict than EP El Niño

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>