Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI-led study documents heavy air pollution in Canadian area with cancer spikes

23.10.2013
Carcinogens detected in emissions downwind of ‘Industrial Heartland’

Levels of contaminants higher than in some of the world’s most polluted cities have been found downwind of Canada’s largest oil, gas and tar sands processing zone, in a rural area where men suffer elevated rates of cancers linked to such chemicals.

The findings by UC Irvine and University of Michigan scientists, published online this week, reveal high levels of the carcinogens 1,3-butadiene and benzene and other airborne pollutants. The researchers also obtained health records spanning more than a decade that showed the number of men with leukemia and non-Hodgkin’s lymphoma was greater in communities closest to the pollution plumes than in neighboring counties. The work is a dramatic illustration of a new World Health Organization report that outdoor air pollution is a leading cause of cancer.

While the scientists stopped short of saying that the pollutants they documented were definitely causing the male cancers, they strongly recommended that the industrial emissions be decreased to protect both workers and nearby residents.

“Our study was designed to test what kinds of concentrations could be encountered on the ground during a random visit downwind of various facilities. We’re seeing elevated levels of carcinogens and other gases in the same area where we’re seeing excess cancers known to be caused by these chemicals,” said UC Irvine chemist Isobel Simpson, lead author of the paper in Atmospheric Environment. “Our main point is that it would be good to proactively lower these emissions of known carcinogens. You can study it and study it, but at some point you just have to say, ‘Let’s reduce it.’ ”

Co-author Stuart Batterman, a University of Michigan professor of environmental health sciences, agreed: “These levels, found over a broad area, are clearly associated with industrial emissions. They also are evidence of major regulatory gaps in monitoring and controlling such emissions and in public health surveillance.”

The researchers captured emissions in the rural Fort Saskatchewan area downwind of major refineries, chemical manufacturers and tar sands processors owned by BP, Dow, Shell and other companies in the so-called “Industrial Heartland” of Alberta. They took one-minute samples at random times in 2008, 2010 and 2012. All showed similar results. Amounts of some dangerous volatile organic compounds were 6,000 times higher than normal.

The team compared the Alberta plumes to heavily polluted megacities. To their surprise, the scientists saw that levels of some chemicals were higher than in Mexico City during the 1990s or in the still polluted Houston-Galveston area.

Simpson is part of UC Irvine’s Blake-Rowland Group, which has measured air pollution around the world for decades. She and Batterman said the findings were important for other residential areas downwind of refineries and chemical manufacturers, including parts of Los Angeles.

“For any community downwind of heavy industrial activity, I would say it’s certainly prudent to conduct surveys of both air quality – especially carcinogens – and human health,” Simpson said.

“For decades, we’ve known that exposure to outdoor air pollutants can cause respiratory and cardiovascular disease,” Batterman said. “The World Health Organization has now also formally recognized that outdoor air pollution is a leading environmental cause of cancer deaths.”

Longtime residents near industrial Alberta have struggled to bring attention to bad odors, health threats and related concerns. The peer-reviewed study is one of few in the region and more investigation of the large and complex facilities is needed.

For example, Simpson said, it appeared in some cases that the companies were not reporting all of the tons of chemicals they release. She and her colleagues documented high levels of 1,3-butadiene that could only have come from one facility, but she said the company had not reported any such emissions.

Other authors are Josette Marrero, Simone Meinardi, Barbara Barletta and Donald Blake, all of UC Irvine.

About the University of California, Irvine: Located in coastal Orange County, near a thriving high-tech hub in one of the nation’s safest cities, UC Irvine was founded in 1965. One of only 62 members of the Association of American Universities, it’s ranked first among U.S. universities under 50 years old by the London-based Times Higher Education. The campus has produced three Nobel laureates and is known for its academic achievement, premier research, innovation and anteater mascot. Led by Chancellor Michael Drake since 2005, UC Irvine has more than 28,000 students and offers 192 degree programs. It’s Orange County’s second-largest employer, contributing $4.3 billion annually to the local economy.

Media access: UC Irvine maintains an online directory of faculty available as experts to the media at today.uci.edu/experts. Radio programs/stations may, for a fee, use an on-campus ISDN line to interview UC Irvine faculty and experts, subject to availability and university approval. For more UC Irvine news, visit news.uci.edu. Additional resources for journalists may be found at communications.uci.edu/for-journalists.

Janet Wilson | EurekAlert!
Further information:
http://www.uci.edu

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>