Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Santa Barbara study provides a new framework for understanding the energetics of ionic liquids

10.06.2013
A new study by researchers at UC Santa Barbara provides clues into the understanding of the behavior of the charged molecules or particles in ionic liquids.

The new framework may lead to the creation of cleaner, more sustainable, and nontoxic batteries, and other sources of chemical power. The research was published in an early online edition of the Proceedings of the National Academy of Sciences.


This is a cartoon depicting how the ionic liquid molecules arrange in electrically charged interfaces (not to scale). The green shading represents the 99.98 percent of the molecules that exist in a neutral state, the blue shapes represent positive ions and the red shapes represent negative ions. The reaction shown above the cartoon illustrates the fact that the molecules can exist in two states: a neutral ionic liquid molecule (99.98 percent of the molecules) and separated positive (blue) and negative (red) ions (0.02 percent of the molecules).

Credit: Matthew Gebbie

"I think this framework would provide a nice strategy to begin discussions toward batteries utilizing ionic liquids," said graduate student researcher Matthew Gebbie, first author of the paper, "Ionic liquids behave as dilute electrolyte solutions."

An electrolyte is a compound that is dissolved in a solution –– usually water –– in order to separate the individual, charged atoms of the compound. Take, for example, sulfuric acid dissolved in water to provide the free ions that create the charge given off by automotive batteries. Electrodes pick up the positively and negatively charged ions and deliver the current where it's needed to start the car or power electrical components.

An ionic liquid is a salt –– like rock salt but in the liquid state –– usually one that can melt at temperatures from ambient room temperatures to 100 degrees Celsius (212 degrees Fahrenheit), so the liquid is composed entirely of homogenous molecules with positive and negative charges (ions).

"You'd expect that at room temperature, with ionic liquids that are made entirely of positive and negative charges, that the ions should be mobile," said Jacob Israelachvili, professor in the Departments of Chemical Engineering and Materials.

But, despite the abundance of ions and a free-flowing environment, ionic liquids have never lived up to their promise of delivering the same kind of energy as currently available electrolytes, like sulfuric acid. Their conductivity is just not as high, said the scientists.

Using a surface forces apparatus, a device developed in the Israelachvili lab that can measure forces between surfaces to the sub-nano scale, the researchers analyzed the interactions of the charges in an ionic liquid –– how the surfaces attract or repel each other, the effective voltage of the liquid, and the ions' interactions with each other, as well as with the electrodes that are meant to pick up or discharge, and thereby conduct their charges.

They found that the ions in the ionic liquids are "stickier" than previously thought.

"They're bound to each other, and it's related to a complex property of any liquid or material, called the dielectric constant, which is the measure of how much you would expect charges to be free," explained Israelachvili. In fact, the somewhat-overlooked dielectric constant, which is a measure of how well charged particles stick to each other in a liquid, plays a larger role in the conductivity of ionic liquids than was previously assumed. Instead of the estimates of 50 percent separation that have been made, the experiments with the surface forces apparatus yielded a less than 0.02 percent separation between ions for typical ionic liquids.

"The connection that nobody had made before that emerged from our work was that it's not enough just to know how sticky the ions are to each other in a vacuum; you need to account for all the other billions of ions that surround any two ions in the liquid state," said Gebbie.

With that parameter taken into account along with the materials' dielectric constant, said the scientists, it became possible to come up with a simple equation that can quantitatively predict the number of free –– effectively separated –– ions that are present in ionic liquids.

"It's so simple. It really captures the physics of what's going on, but it's also simple enough to be used for predictive purposes," said Gebbie, adding that the group is now in active discussions with potential collaborators to refine and improve the equation.

The research has wide implications. With the formula, it would be possible to design an ionic liquid with particular desired properties, instead of performing countless trial-and-error tests or experiments. To date, over a million combinations of positive and negative ions have been identified that can be mixed together to form an ionic liquid, according to the researchers. To further blend these liquids to find, change, or add properties, the number of possible combinations shoots up to about 1018, or a trillion trillion potential combinations.

Not only could efficient charge-conducting ionic liquids be found in a shorter amount of time, but other properties could also be incorporated via molecular fine-tuning, such as less toxicity, reduced corrosiveness, or increased biodegradability.

"An electric vehicle has to have a very large battery. So if that very large battery is based on something that's acid, then you have a large compartment of acid. In an accident, if you had a nonflammable, nontoxic ionic liquid, then at least you could take some of that risk out of the equation," said Gebbie.

Sonia Fernandez | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>