Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Davis researchers identify brain protein for synapse development

01.02.2010
Discovery could expand understanding of autism and schizophrenia

A new study from UC Davis Health System identifies for the first time a brain protein called SynDIG1 that plays a critical role in creating and sustaining synapses, the complex chemical signaling system responsible for communication between neurons. The research, published in the Jan.14 issue of the journal Neuron, fills a major gap in understanding the molecular foundations of higher cognitive abilities as well as some brain disorders.

"We know that synapses are essential for learning, memory and perception and suspect that imbalances in synapse formation impact disorders of the brain such as autism and schizophrenia," said Elva Diaz, assistant professor of pharmacology and senior author of the study. "Our study is the first to identify SynDIG1 as a critical regulator of these important brain connections."

The majority of synapses in the brain use glutamate as a neurotransmitter. While past research revealed that regulation of a certain class of glutamate receptor -- AMPA receptors -- are critical to communication between neurons, Diaz set out to discover novel molecular mechanisms of AMPA receptors that could support the formation and vitality of synapses.

She began by evaluating a gene (tmem90b) predicted to encode a novel transmembrane protein that is expressed exclusively in the central nervous system and highly similar across vertebrates, but otherwise not well-described. Microarray analyses revealed that this gene was expressed during synapse formation.

"I've always been interested in the discovery of new molecules, especially those with unique paths and intracellular influences," said Diaz, whose work focuses on the molecular mechanisms of brain development. "This is where answers to many disease processes can be found."

Diaz named the protein SynDIG1 -- or the synapse differentiation induced gene product -- and set out to define its role in synapse development. She and a team of molecular neurobiologists and electrophysiologists isolated cells from rat hippocampal neurons for a number of tests to understand the protein's functions.

One of the most important of those tests showed that SynDIG1 co-exists with AMPA receptors at the site of synapse formation, suggesting that it is essential to synapses in their earliest stages. Additional experiments revealed that manipulating SynDIG1 expression levels in the neurons changed both the number and quality of synapses, proving it had key roles in synapse formation as well in their lifespan and viability.

"Reducing SynDIG1 expression led to much fewer and smaller synapses, while increasing expression created more mature, stable synapses," said Diaz. "We think it is a key driver of the entire synaptic process, but we need to test this in an in vivo model before we can confidently say this is true."

Next, Diaz and her research team will test the role of SynDIG1 in live mice where the gene that encodes the protein is knocked out to determine the molecular and behavioral outcomes. She will also test the role of SynDIG1 in both early and established brain cells.

"We predict that SynDIG1 will be equally important in both new and older neurons, meaning that it has importance in both neurodevelopmental and later-onset diseases," said Diaz. "We could be on the path to redefining many brain diseases as synapse diseases instead."

The study lead author was Evgenia Kalashnikova of UC Davis. Additional Diaz lab investigators and collaborators on the research included Inderpreet Kaur, Gustavo Barisone, Bonnie Li, Tatsuto Ishimaru and James Trimmer of UC Davis; and Durga Mohapatra and Ramon Lorca of the University of Iowa.

The research was funded by grants to individual researchers from the Alfred P. Sloan Research Foundation, Whitehall Foundation, National Science Foundation, National Institute of Neurological Disorders and Stroke, and University of Iowa Office of the Vice President of Research.

The UC Davis School of Medicine is among the nation's leading medical schools, recognized for its specialty- and primary-care programs. The school offers fully accredited master's degree programs in public health and in informatics, and its combined M.D.-Ph.D. program is training the next generation of physician-scientists to conduct high-impact research and translate discoveries into better clinical care. Along with being a recognized leader in medical research, the school is committed to serving underserved communities and advancing rural health. For further information, visit the UC Davis School of Medicine Web site at http://www.ucdmc.ucdavis.edu/medschool/.

Karen Finney | EurekAlert!
Further information:
http://www.ucdmc.ucdavis.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>