Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UBC research sheds light on sudden death in people with high cholesterol

25.08.2009
Cholesterol can affect the flow of the electrical currents that generate the heart beat, according to a study from two UBC cardiovascular researchers funded by the Heart and Stroke Foundation of BC & Yukon.

The research team has just published the important discovery about the causes of cardiac arrhythmias (abnormal heartbeats) in one of the world's leading scientific journals.

Together with a group from Paris, France, UBC researchers David Fedida and Jodene Eldstrom found that too much cholesterol can affect the electrical currents, perhaps causing the heart to start beating out of rhythm or even stop beating. In contrast, reducing the cholesterol normalized the structures underlying the electrical activity, thus promoting a regular and healthy heartbeat.

The researchers discovered that the key mechanism by which this happens is the Kv1.5 potassium channel, a protein that facilitates the flow of electrical charges through heart cells. Cholesterol blocks the functioning of these proteins while lowering of cholesterol levels enhances their function.

Prior to this research, scientists already knew that cholesterol plays an important role in regulating the heart's electrical system. However, they didn't know how.

"There is recent clinical and experimental evidence that lipid-lowering therapy, such as statins, can restore normal heart rhythms, thus helping to prevent sudden death," Dr. David Fedida said. "However, these pharmacological effects of statins are poorly understood and could involve other effects than their well-understood reduction of the cholesterol in blood vessels. Here we show that cholesterol regulates the submembrane pool of ion channels readily available for recruitment into the surface membranes of heart cells. This process could be a major mechanism for the tuning of the heartbeat and might contribute to the reduction in the incidence of abnormal and fatal heart rhythms during treatment with lipid-lowering drugs."

"Arrhythmias are a serious problem," said Dr. Jeff Sommers, Manager, Research and Science, Heart and Stroke Foundation of BC & Yukon. "Although they affect people of all ages, this is especially so with an aging population. This is a really exciting development that moves us well along the road of understanding how to target heart rhythm disorders for prevention and treatment."

This discovery points toward a new path for developing therapies that can directly target the causes of arrhythmia both before and after they start. Presently, anti-arrhythmic drugs are non-specific and may have significant side-effects. About 40% of Canadians have high blood cholesterol.

This research is published in the current issue of the Proceedings of the National Academy of Sciences, a top global journal. As well, the researchers will present their findings next week at a plenary session of the European Society of Cardiology in Barcelona.

Brian Lin | EurekAlert!
Further information:
http://www.ubc.ca

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>