Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New UAB Study Sheds Light on Brain’s Response to Distress, Unexpected Events

12.11.2009
In a new study, psychologists at the University of Alabama at Birmingham (UAB) are able to see in detail for the first time how various regions of the human brain respond when people experience an unexpected or traumatic event. The study could lead to the creation of biological measures that could identify people with post-traumatic stress disorder (PTSD) or identify PTSD sufferers who would benefit from specific treatments.

In the study, UAB researchers used functional magnetic resonance imaging (fMRI) to see how activity in the parts of the brain associated with fear, learning and memory respond when research participants were startled by a loud static sound and when they were able to correctly predict when the sound would occur.

"When the noise is unexpected, the brain's response is larger," said UAB psychologist David Knight, Ph.D., principal investigator on the study, which is currently in press online and will appear in the January 2010 issue of the journal NeuroImage. "But when participants are able to predict when they are going to hear the unpleasant static noise, you can see the regions of the brain quiet down so that a smaller emotional response is produced.

"While past studies have looked at this startle phenomenon behaviorally, this is the first look at what is actually happening in these regions of the brain when someone is exposed to an unpleasant, unpredictable event," Knight said.

In the study, UAB psychologists placed 15 healthy adults in an fMRI scanner and asked them to listen to a series of low- and high-pitched tones. Some tones predicted a loud static sound would follow, while other tones predicted that the static sound would not occur. During the study, participants were asked to rate the tones between zero and 100; zero if they did not expect to hear the static sound, 100 if the static sound was expected and 50 if they could not make a prediction.

In addition, the researchers measured the participants' skin responses such as sweaty palms to determine how much the participants were physically bothered by the static noise. The researchers then correlated the skin and brain responses to evaluate how brain activity influences emotional expression.

An analysis of the brain scans showed that unpleasant events produced activity within the frontal lobe of the brain. The amount of activity was reduced when participants expected the unpleasant event, but not when the event was unexpected. Further, the amount of activity within these brain regions controlled the emotional response that was expressed.

"These findings are a first step in identifying techniques and procedures that will allow us in future studies to go in and look at patient populations and better understand how their brains respond to negative or unpleasant stimuli," Knight said.

"Those studies will hopefully lead to other studies in which we can perhaps try different medications with these individuals and see if that alters their brains to aversive stimuli," he said. "With that information, we can start to develop biological markers using fMRI that may help us better identify and treat different types of disorders."

About the UAB Department of Psychology

The UAB Department of Psychology is recognized nationally for its significant contributions to cutting-edge research, scholarship and teaching. In addition to its undergraduate program, the department's graduate programs include medical psychology, lifespan developmental psychology and behavioral neuroscience.

Media Contact:
Gail Short
(205) 934-8931
gshort@uab.edu

Gail Short | EurekAlert!
Further information:
http://www.uab.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>