Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New UAB Study Sheds Light on Brain’s Response to Distress, Unexpected Events

In a new study, psychologists at the University of Alabama at Birmingham (UAB) are able to see in detail for the first time how various regions of the human brain respond when people experience an unexpected or traumatic event. The study could lead to the creation of biological measures that could identify people with post-traumatic stress disorder (PTSD) or identify PTSD sufferers who would benefit from specific treatments.

In the study, UAB researchers used functional magnetic resonance imaging (fMRI) to see how activity in the parts of the brain associated with fear, learning and memory respond when research participants were startled by a loud static sound and when they were able to correctly predict when the sound would occur.

"When the noise is unexpected, the brain's response is larger," said UAB psychologist David Knight, Ph.D., principal investigator on the study, which is currently in press online and will appear in the January 2010 issue of the journal NeuroImage. "But when participants are able to predict when they are going to hear the unpleasant static noise, you can see the regions of the brain quiet down so that a smaller emotional response is produced.

"While past studies have looked at this startle phenomenon behaviorally, this is the first look at what is actually happening in these regions of the brain when someone is exposed to an unpleasant, unpredictable event," Knight said.

In the study, UAB psychologists placed 15 healthy adults in an fMRI scanner and asked them to listen to a series of low- and high-pitched tones. Some tones predicted a loud static sound would follow, while other tones predicted that the static sound would not occur. During the study, participants were asked to rate the tones between zero and 100; zero if they did not expect to hear the static sound, 100 if the static sound was expected and 50 if they could not make a prediction.

In addition, the researchers measured the participants' skin responses such as sweaty palms to determine how much the participants were physically bothered by the static noise. The researchers then correlated the skin and brain responses to evaluate how brain activity influences emotional expression.

An analysis of the brain scans showed that unpleasant events produced activity within the frontal lobe of the brain. The amount of activity was reduced when participants expected the unpleasant event, but not when the event was unexpected. Further, the amount of activity within these brain regions controlled the emotional response that was expressed.

"These findings are a first step in identifying techniques and procedures that will allow us in future studies to go in and look at patient populations and better understand how their brains respond to negative or unpleasant stimuli," Knight said.

"Those studies will hopefully lead to other studies in which we can perhaps try different medications with these individuals and see if that alters their brains to aversive stimuli," he said. "With that information, we can start to develop biological markers using fMRI that may help us better identify and treat different types of disorders."

About the UAB Department of Psychology

The UAB Department of Psychology is recognized nationally for its significant contributions to cutting-edge research, scholarship and teaching. In addition to its undergraduate program, the department's graduate programs include medical psychology, lifespan developmental psychology and behavioral neuroscience.

Media Contact:
Gail Short
(205) 934-8931

Gail Short | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>