Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U-M study uncovers key to how 'triggering event' in cancer occurs

02.11.2009
Researchers link hormone to creation of gene fusion in prostate cancer

Researchers at the University of Michigan Comprehensive Cancer Center have discovered what leads to two genes fusing together, a phenomenon that has been shown to cause prostate cancer to develop.

The study found that pieces of chromosome relocate near each other after exposure to the hormone androgen. This sets the scene for the gene fusion to occur. The finding is reported online Oct. 29 in Science Express.

"This work shows the origin of how the gene fusion is actually created and perhaps the origin of prostate cancer itself. This is a triggering event for the genesis of prostate cancer," says study author Arul Chinnaiyan, M.D., Ph.D., director of the Michigan Center for Translational Pathology and S.P. Hicks Professor of Pathology at the U-M Medical School. Chinnaiyan is also a Howard Hughes Medical Institute investigator.

Chinnaiyan and his team identified in 2005 a prostate-specific gene called TMPRSS2 that fuses with the gene ERG, which is known to play a role in prostate cancer. Their earlier research has shown that this gene fusion acts as an "on switch" to trigger prostate cancer. In the current study, the researchers focused on what causes the gene fusion to occur.

The researchers took prostate cancer cells that did not reflect the gene fusion but that were sensitive to androgen, a male hormone known to play a role in some prostate cancers. They exposed the cells to androgen and found that two pieces of chromosome that are normally far apart are relocated near each other.

Next, the researchers applied radiation to the androgen-stimulated cells. This stress or insult to the cells – designed to induce chromosomal breaks – led to the gene fusion occurring.

"We thought the gene fusions occurred as a chance event, but it's not. Chromosomes can actually be induced in three-dimensional space to be close to each other. Then when an insult to the DNA occurs, the fusion happens," says lead study author Ram-Shankar Mani, Ph.D., a research fellow in pathology at the U-M Medical School.

The researchers believe the findings could have implications for gene fusions that occur in other cancer types. By understanding how gene fusions occur, the researchers suggest that screening tools or prevention strategies could potentially be developed.

Prostate cancer statistics: 192,280 Americans will be diagnosed with prostate cancer this year and 27,360 will die from the disease, according to the American Cancer Society

Additional authors: Scott A. Tomlins, Kaitlin Callahan, Aparna Ghosh, Mukesh N. Nyati, Sooryanarayana Varambally and Nallasivam Palanisamy, all from U-M

Funding: National Institutes of Health, U.S. Department of Defense

Disclosure: The University of Michigan has filed for a patent on the detection of gene fusions in prostate cancer, on which Tomlins and Chinnaiyan are co-inventors. The diagnostic field of use has been licensed to Gen-Probe Inc. Chinnaiyan also has a sponsored research agreement with Gen-Probe. Gen-Probe has had no role in the design or experimentation of this study, nor has it participated in the writing of the manuscript.

Reference: Science Express, 10.1126/science.1178124

Resources:
U-M Cancer AnswerLine, 800-865-1125
Michigan Center for Translational Pathology, www.med.umich.edu/mctp
U-M Comprehensive Cancer Center, www.mcancer.org

Nicole Fawcett | EurekAlert!
Further information:
http://www.umich.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>