Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U-M study uncovers key to how 'triggering event' in cancer occurs

02.11.2009
Researchers link hormone to creation of gene fusion in prostate cancer

Researchers at the University of Michigan Comprehensive Cancer Center have discovered what leads to two genes fusing together, a phenomenon that has been shown to cause prostate cancer to develop.

The study found that pieces of chromosome relocate near each other after exposure to the hormone androgen. This sets the scene for the gene fusion to occur. The finding is reported online Oct. 29 in Science Express.

"This work shows the origin of how the gene fusion is actually created and perhaps the origin of prostate cancer itself. This is a triggering event for the genesis of prostate cancer," says study author Arul Chinnaiyan, M.D., Ph.D., director of the Michigan Center for Translational Pathology and S.P. Hicks Professor of Pathology at the U-M Medical School. Chinnaiyan is also a Howard Hughes Medical Institute investigator.

Chinnaiyan and his team identified in 2005 a prostate-specific gene called TMPRSS2 that fuses with the gene ERG, which is known to play a role in prostate cancer. Their earlier research has shown that this gene fusion acts as an "on switch" to trigger prostate cancer. In the current study, the researchers focused on what causes the gene fusion to occur.

The researchers took prostate cancer cells that did not reflect the gene fusion but that were sensitive to androgen, a male hormone known to play a role in some prostate cancers. They exposed the cells to androgen and found that two pieces of chromosome that are normally far apart are relocated near each other.

Next, the researchers applied radiation to the androgen-stimulated cells. This stress or insult to the cells – designed to induce chromosomal breaks – led to the gene fusion occurring.

"We thought the gene fusions occurred as a chance event, but it's not. Chromosomes can actually be induced in three-dimensional space to be close to each other. Then when an insult to the DNA occurs, the fusion happens," says lead study author Ram-Shankar Mani, Ph.D., a research fellow in pathology at the U-M Medical School.

The researchers believe the findings could have implications for gene fusions that occur in other cancer types. By understanding how gene fusions occur, the researchers suggest that screening tools or prevention strategies could potentially be developed.

Prostate cancer statistics: 192,280 Americans will be diagnosed with prostate cancer this year and 27,360 will die from the disease, according to the American Cancer Society

Additional authors: Scott A. Tomlins, Kaitlin Callahan, Aparna Ghosh, Mukesh N. Nyati, Sooryanarayana Varambally and Nallasivam Palanisamy, all from U-M

Funding: National Institutes of Health, U.S. Department of Defense

Disclosure: The University of Michigan has filed for a patent on the detection of gene fusions in prostate cancer, on which Tomlins and Chinnaiyan are co-inventors. The diagnostic field of use has been licensed to Gen-Probe Inc. Chinnaiyan also has a sponsored research agreement with Gen-Probe. Gen-Probe has had no role in the design or experimentation of this study, nor has it participated in the writing of the manuscript.

Reference: Science Express, 10.1126/science.1178124

Resources:
U-M Cancer AnswerLine, 800-865-1125
Michigan Center for Translational Pathology, www.med.umich.edu/mctp
U-M Comprehensive Cancer Center, www.mcancer.org

Nicole Fawcett | EurekAlert!
Further information:
http://www.umich.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>