Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U-M study uncovers key to how 'triggering event' in cancer occurs

02.11.2009
Researchers link hormone to creation of gene fusion in prostate cancer

Researchers at the University of Michigan Comprehensive Cancer Center have discovered what leads to two genes fusing together, a phenomenon that has been shown to cause prostate cancer to develop.

The study found that pieces of chromosome relocate near each other after exposure to the hormone androgen. This sets the scene for the gene fusion to occur. The finding is reported online Oct. 29 in Science Express.

"This work shows the origin of how the gene fusion is actually created and perhaps the origin of prostate cancer itself. This is a triggering event for the genesis of prostate cancer," says study author Arul Chinnaiyan, M.D., Ph.D., director of the Michigan Center for Translational Pathology and S.P. Hicks Professor of Pathology at the U-M Medical School. Chinnaiyan is also a Howard Hughes Medical Institute investigator.

Chinnaiyan and his team identified in 2005 a prostate-specific gene called TMPRSS2 that fuses with the gene ERG, which is known to play a role in prostate cancer. Their earlier research has shown that this gene fusion acts as an "on switch" to trigger prostate cancer. In the current study, the researchers focused on what causes the gene fusion to occur.

The researchers took prostate cancer cells that did not reflect the gene fusion but that were sensitive to androgen, a male hormone known to play a role in some prostate cancers. They exposed the cells to androgen and found that two pieces of chromosome that are normally far apart are relocated near each other.

Next, the researchers applied radiation to the androgen-stimulated cells. This stress or insult to the cells – designed to induce chromosomal breaks – led to the gene fusion occurring.

"We thought the gene fusions occurred as a chance event, but it's not. Chromosomes can actually be induced in three-dimensional space to be close to each other. Then when an insult to the DNA occurs, the fusion happens," says lead study author Ram-Shankar Mani, Ph.D., a research fellow in pathology at the U-M Medical School.

The researchers believe the findings could have implications for gene fusions that occur in other cancer types. By understanding how gene fusions occur, the researchers suggest that screening tools or prevention strategies could potentially be developed.

Prostate cancer statistics: 192,280 Americans will be diagnosed with prostate cancer this year and 27,360 will die from the disease, according to the American Cancer Society

Additional authors: Scott A. Tomlins, Kaitlin Callahan, Aparna Ghosh, Mukesh N. Nyati, Sooryanarayana Varambally and Nallasivam Palanisamy, all from U-M

Funding: National Institutes of Health, U.S. Department of Defense

Disclosure: The University of Michigan has filed for a patent on the detection of gene fusions in prostate cancer, on which Tomlins and Chinnaiyan are co-inventors. The diagnostic field of use has been licensed to Gen-Probe Inc. Chinnaiyan also has a sponsored research agreement with Gen-Probe. Gen-Probe has had no role in the design or experimentation of this study, nor has it participated in the writing of the manuscript.

Reference: Science Express, 10.1126/science.1178124

Resources:
U-M Cancer AnswerLine, 800-865-1125
Michigan Center for Translational Pathology, www.med.umich.edu/mctp
U-M Comprehensive Cancer Center, www.mcancer.org

Nicole Fawcett | EurekAlert!
Further information:
http://www.umich.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>