Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of M research provides insights into the roots of gamblers' fallacies and other superstitions

31.08.2010
Research helps explain causes of seemingly irrational human decision-making

Gamblers who think they have a "hot hand," only to end up walking away with a loss, may nonetheless be making "rational" decisions, according to new research from University of Minnesota psychologists. The study finds that because humans are making decisions based on how we think the world works, if erroneous beliefs are held, it can result in behavior that looks distinctly irrational.

This research, forthcoming in the Proceedings of the National Academy of Sciences (PNAS) "Early Edition," examines the roots of a seemingly irrational human decision strategy that occurs in so-called binary choice tasks, which has perplexed researchers in economics, psychology and neuroscience for decades. In these tasks, subjects are repeatedly asked to choose between two options, with one option having a higher probability of being correct than the other (imagine a biased coin that will land on heads 70 percent of trials, and tails on 30 percent of trials). While the right strategy is to always pick the higher probability option, subjects instead choose the options in proportion to the probability of it being correct.

"The overarching idea is that there is typically structure in the world, and it makes sense that when we make decisions, we try to understand the structure in order to exploit it," says Shawn Green, a post-doctoral fellow in the College of Liberal Arts' Department of Psychology and Center for Cognitive Sciences. "One of the simplest kinds of 'structure' is when the outcome that just occurred tells you something about what is likely to happen next."

"Where people go astray is when they base their decisions on beliefs that are different than what is actually present in the world," says Green. "In the coin example, if you toss a coin five times and all five times are heads, should you pick heads or tails on the next flip? Assuming the coin is fair, it doesn't matter – the five previous heads don't change the probability of heads on the next flip - it's still 50 percent - but people nevertheless act as though those previous flips influence the next one."

Green says when things are actually independent over time, meaning they don't have any structure, people will interpret results through possible structures, a way of thinking often seen among gamblers. For example, gamblers who win three hands in a row, may believe themselves to be "hot" and thus more likely to win the next hand. Green, with advisors Daniel Kersten and Paul Schrater, showed that similar behaviors are seen even in an optimal, fully rational computer learner given similar incorrect beliefs about the world.

Furthermore, when the context of the task was changed so that subjects understood that the outcomes were actually independent, a drastic shift in their behavior was noted, with subjects all doing the "right" thing for the way the world actually worked.

"This demonstrates that given the right world model, humans are more than capable of easily learning to make optimal decisions," Green says.

The paper "Alterations in choice behavior by manipulations of world model," forthcoming in the Proceedings of the National Academy of Sciences (PNAS), was co-authored by C. Shawn Green, Charles Benson, Daniel Kersten and Paul Schrater in the Department of Psychology, College of Liberal Arts, University of Minnesota.

Jeff Falk | EurekAlert!
Further information:
http://www.umn.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>