Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of M research provides insights into the roots of gamblers' fallacies and other superstitions

31.08.2010
Research helps explain causes of seemingly irrational human decision-making

Gamblers who think they have a "hot hand," only to end up walking away with a loss, may nonetheless be making "rational" decisions, according to new research from University of Minnesota psychologists. The study finds that because humans are making decisions based on how we think the world works, if erroneous beliefs are held, it can result in behavior that looks distinctly irrational.

This research, forthcoming in the Proceedings of the National Academy of Sciences (PNAS) "Early Edition," examines the roots of a seemingly irrational human decision strategy that occurs in so-called binary choice tasks, which has perplexed researchers in economics, psychology and neuroscience for decades. In these tasks, subjects are repeatedly asked to choose between two options, with one option having a higher probability of being correct than the other (imagine a biased coin that will land on heads 70 percent of trials, and tails on 30 percent of trials). While the right strategy is to always pick the higher probability option, subjects instead choose the options in proportion to the probability of it being correct.

"The overarching idea is that there is typically structure in the world, and it makes sense that when we make decisions, we try to understand the structure in order to exploit it," says Shawn Green, a post-doctoral fellow in the College of Liberal Arts' Department of Psychology and Center for Cognitive Sciences. "One of the simplest kinds of 'structure' is when the outcome that just occurred tells you something about what is likely to happen next."

"Where people go astray is when they base their decisions on beliefs that are different than what is actually present in the world," says Green. "In the coin example, if you toss a coin five times and all five times are heads, should you pick heads or tails on the next flip? Assuming the coin is fair, it doesn't matter – the five previous heads don't change the probability of heads on the next flip - it's still 50 percent - but people nevertheless act as though those previous flips influence the next one."

Green says when things are actually independent over time, meaning they don't have any structure, people will interpret results through possible structures, a way of thinking often seen among gamblers. For example, gamblers who win three hands in a row, may believe themselves to be "hot" and thus more likely to win the next hand. Green, with advisors Daniel Kersten and Paul Schrater, showed that similar behaviors are seen even in an optimal, fully rational computer learner given similar incorrect beliefs about the world.

Furthermore, when the context of the task was changed so that subjects understood that the outcomes were actually independent, a drastic shift in their behavior was noted, with subjects all doing the "right" thing for the way the world actually worked.

"This demonstrates that given the right world model, humans are more than capable of easily learning to make optimal decisions," Green says.

The paper "Alterations in choice behavior by manipulations of world model," forthcoming in the Proceedings of the National Academy of Sciences (PNAS), was co-authored by C. Shawn Green, Charles Benson, Daniel Kersten and Paul Schrater in the Department of Psychology, College of Liberal Arts, University of Minnesota.

Jeff Falk | EurekAlert!
Further information:
http://www.umn.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>