Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trudeau Institute announces latest discovery

13.03.2012
Research has implications for treating and preventing cancers caused by viruses

New research from the Trudeau Institute addresses how the human body controls gamma-herpesviruses, a class of viruses thought to cause a variety of cancers. The study, carried out in the laboratory of Dr. Marcia Blackman, awaits publication in The Journal of Immunology.

Led by postdoctoral fellow Mike Freeman, with assistance from other laboratory colleagues, the study describes the role of white blood cells in controlling gamma-herpesvirus infections and has implications for the treatment and prevention of certain cancers.

One of the many factors that can contribute to the development of cancer is infection with cancer-causing viruses, among them gamma-herpesviruses like the Epstein Barr virus and Kaposi's sarcoma-associated herpesvirus. With more than 95 percent of the human population infected with one or both of these viruses, it is important to understand their infection cycles and how immune responses keep them in check in the majority of individuals.

Gamma-herpesvirus infections are characterized by two distinct phases. In the initial, active phase, the immune system responds by attacking the virus. The virus, however, has developed a clever mechanism for "sneaking" past the immune response to conceal itself within the body, a process researchers refer to as latent infection. While in hiding, the virus persists in a quiet, inactive state. Occasionally, it can start to reactivate and begin to multiply again, increasing the risk of cancer development.

The chance that cancer will develop is greatly increased if the immune system is weakened, such as with immunosuppression following transplantation or as a consequence of other diseases, such as AIDS.

Researchers around the globe are asking important questions about the nature of these viruses and working in their labs to answer them. Among those questions: How do the viruses escape the immune response to establish lifelong latency? What triggers their reactivation in some people? Can we develop therapies to control reactivation and prevent the development of cancer?

The key finding of the Blackman study is that the mechanism by which a type of white blood cell, called a CD8 T cell, controls the virus differs between the initial active phase of infection and long-term latent infection. These novel findings will accelerate efforts to develop therapies to control gamma-herpesvirus infections and prevent the development of virus-associated cancers.

The Trudeau Institute is an independent, not-for-profit, biomedical research organization, whose scientific mission is to make breakthrough discoveries leading to improved human health. Trudeau researchers are identifying the basic mechanisms used by the immune system to combat viruses like influenza and gamma-herpesviruses, and mycobacteria, such as tuberculosis, parasites and cancer, so that better vaccines and therapies can be developed for fighting deadly disease.

Kim Godreau | EurekAlert!
Further information:
http://www.trudeauinstitute.org

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>