Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Trudeau Institute announces latest discovery

Research has implications for treating and preventing cancers caused by viruses

New research from the Trudeau Institute addresses how the human body controls gamma-herpesviruses, a class of viruses thought to cause a variety of cancers. The study, carried out in the laboratory of Dr. Marcia Blackman, awaits publication in The Journal of Immunology.

Led by postdoctoral fellow Mike Freeman, with assistance from other laboratory colleagues, the study describes the role of white blood cells in controlling gamma-herpesvirus infections and has implications for the treatment and prevention of certain cancers.

One of the many factors that can contribute to the development of cancer is infection with cancer-causing viruses, among them gamma-herpesviruses like the Epstein Barr virus and Kaposi's sarcoma-associated herpesvirus. With more than 95 percent of the human population infected with one or both of these viruses, it is important to understand their infection cycles and how immune responses keep them in check in the majority of individuals.

Gamma-herpesvirus infections are characterized by two distinct phases. In the initial, active phase, the immune system responds by attacking the virus. The virus, however, has developed a clever mechanism for "sneaking" past the immune response to conceal itself within the body, a process researchers refer to as latent infection. While in hiding, the virus persists in a quiet, inactive state. Occasionally, it can start to reactivate and begin to multiply again, increasing the risk of cancer development.

The chance that cancer will develop is greatly increased if the immune system is weakened, such as with immunosuppression following transplantation or as a consequence of other diseases, such as AIDS.

Researchers around the globe are asking important questions about the nature of these viruses and working in their labs to answer them. Among those questions: How do the viruses escape the immune response to establish lifelong latency? What triggers their reactivation in some people? Can we develop therapies to control reactivation and prevent the development of cancer?

The key finding of the Blackman study is that the mechanism by which a type of white blood cell, called a CD8 T cell, controls the virus differs between the initial active phase of infection and long-term latent infection. These novel findings will accelerate efforts to develop therapies to control gamma-herpesvirus infections and prevent the development of virus-associated cancers.

The Trudeau Institute is an independent, not-for-profit, biomedical research organization, whose scientific mission is to make breakthrough discoveries leading to improved human health. Trudeau researchers are identifying the basic mechanisms used by the immune system to combat viruses like influenza and gamma-herpesviruses, and mycobacteria, such as tuberculosis, parasites and cancer, so that better vaccines and therapies can be developed for fighting deadly disease.

Kim Godreau | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>