Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Trouble Sleeping? It May Affect Your Memory Later On

The amount and quality of sleep you get at night may affect your memory later in life, according to research that was released today and will be presented at the American Academy of Neurology’s 64th Annual Meeting in New Orleans April 21 to April 28, 2012.

“Disrupted sleep appears to be associated with the build-up of amyloid plaques, a hallmark marker of Alzheimer’s disease, in the brains of people without memory problems,” said study author Yo-El Ju, MD, with Washington University School of Medicine in St. Louis and a member of the American Academy of Neurology. “Further research is needed to determine why this is happening and whether sleep changes may predict cognitive decline.”

Researchers tested the sleep patterns of 100 people between the ages of 45 and 80 who were free of dementia. Half of the group had a family history of Alzheimer’s disease. A device was placed on the participants for two weeks to measure sleep. Sleep diaries and questionnaires were also analyzed by researchers.

After the study, it was discovered that 25 percent of the participants had evidence of amyloid plaques, which can appear years before the symptoms of Alzheimer’s disease begin. The average time a person spent in bed during the study was about eight hours, but the average sleep time was 6.5 hours due to short awakenings in the night.

The study found that people who woke up more than five times per hour were more likely to have amyloid plaque build-up compared to people who didn’t wake up as much. The study also found those people who slept “less efficiently” were more likely to have the markers of early stage Alzheimer’s disease than those who slept more efficiently. In other words, those who spent less than 85 percent of their time in bed actually sleeping were more likely to have the markers than those who spent more than 85 percent of their time in bed actually sleeping.

“The association between disrupted sleep and amyloid plaques is intriguing, but the information from this study can’t determine a cause-effect relationship or the direction of this relationship. We need longer-term studies, following individuals’ sleep over years, to determine whether disrupted sleep leads to amyloid plaques, or whether brain changes in early Alzheimer’s disease lead to changes in sleep,” Ju said. “Our study lays the groundwork for investigating whether manipulating sleep is a possible strategy in the prevention or slowing of Alzheimer disease.”

Learn more about sleep disorders and Alzheimer’s disease at

The study was supported by the Ellison Foundation and the National Institutes of Health.

The American Academy of Neurology, an association of more than 25,000 neurologists and neuroscience professionals, is dedicated to promoting the highest quality patient-centered neurologic care. A neurologist is a doctor with specialized training in diagnosing, treating and managing disorders of the brain and nervous system such as stroke, Alzheimer’s disease, epilepsy, Parkinson’s disease and multiple sclerosis. For more information about the American Academy of Neurology, visit

Rachel L. Seroka | American Academy of Neurology
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>