Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What Triggers Mass Extinctions? Study Shows How Invasive Species Stop New Life

03.01.2011
Collapse of Earth's marine life 378 to 375 million years ago holds key

An influx of invasive species can stop the dominant natural process of new species formation and trigger mass extinction events, according to research results published today in the journal PLoS ONE.

The study of the collapse of Earth's marine life 378 to 375 million years ago suggests that the planet's current ecosystems, which are struggling with biodiversity loss, could meet a similar fate.

Although Earth has experienced five major mass extinction events, the environmental crash during the Late Devonian was unlike any other in the planet's history.

The actual number of extinctions wasn't higher than the natural rate of species loss, but very few new species arose.

"We refer to the Late Devonian as a mass extinction, but it was actually a biodiversity crisis," said Alycia Stigall, a scientist at Ohio University and author of the PLoS ONE paper.

"This research significantly contributes to our understanding of species invasions from a deep-time perspective," said Lisa Boush, program director in the National Science Foundation (NSF)'s Division of Earth Sciences, which funded the research.&

"The knowledge is critical to determining the cause and extent of mass extinctions through time, especially the five biggest biodiversity crises in the history of life on Earth. It provides an important perspective on our current biodiversity crises."

The research suggests that the typical method by which new species originate--vicariance--was absent during this ancient phase of Earth's history, and could be to blame for the mass extinction.

Vicariance occurs when a population becomes geographically divided by a natural, long-term event, such as the formation of a mountain range or a new river channel, and evolves into different species.

New species also can originate through dispersal, which occurs when a subset of a population moves to a new location.

In a departure from previous studies, Stigall used phylogenetic analysis, which draws on an understanding of the tree of evolutionary relationships to examine how individual speciation events occurred.

She focused on one bivalve, Leptodesma (Leiopteria), and two brachiopods, Floweria and Schizophoria (Schizophoria), as well as a predatory crustacean, Archaeostraca.

These small, shelled marine animals were some of the most common inhabitants of the Late Devonian oceans, which had the most extensive reef system in Earth's history.

The seas teemed with huge predatory fish such as Dunkleosteus, and smaller life forms such as trilobites and crinoids (sea lilies).

The first forests and terrestrial ecosystems appeared during this time; amphibians began to walk on land.

As sea levels rose and the continents closed in to form connected land masses, however, some species gained access to environments they hadn't inhabited before.

The hardiest of these invasive species that could thrive on a variety of food sources and in new climates became dominant, wiping out more locally adapted species.

The invasive species were so prolific at this time that it became difficult for many new species to arise.

"The main mode of speciation that occurs in the geological record is shut down during the Devonian," said Stigall. "It just stops in its tracks."

Of the species Stigall studied, most lost substantial diversity during the Late Devonian, and one, Floweria, became extinct.

The entire marine ecosystem suffered a major collapse. Reef-forming corals were decimated and reefs did not appear on Earth again for 100 million years.

The giant fishes, trilobites, sponges and brachiopods also declined dramatically, while organisms on land had much higher survival rates.

The study is relevant for the current biodiversity crisis, Stigall said, as human activity has introduced a high number of invasive species into new ecosystems.

In addition, the modern extinction rate exceeds the rate of ancient extinction events, including the event that wiped out the dinosaurs 65 million years ago.

"Even if you can stop habitat loss, the fact that we've moved all these invasive species around the planet will take a long time to recover from because the high level of invasions has suppressed the speciation rate substantially," Stigall said.

Maintaining Earth's ecosystems, she suggests, would be helped by focusing efforts and resources on protection of new species generation.

"The more we know about this process," Stigall said, "the more we will understand how to best preserve biodiversity."

The research was also funded by the American Chemical Society and Ohio University.

Media Contacts
Cheryl Dybas, NSF (703) 292-7734 cdybas@nsf.gov
Andrea Gibson, Ohio University (740) 597-2166 gibsona@ohio.edu
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>