Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trigger for Brain Plasticity Identified

11.08.2008
Researchers have long sought a factor that can trigger the brain’s ability to learn – and perhaps recapture the “sponge-like” quality of childhood. In the August 8 issue of the journal Cell, neuroscientists at Children’s Hospital Boston report that they’ve identified such a factor, a protein called Otx 2.

Otx2 helps a key type of cell in the cortex to mature, initiating a critical period -- a window of heightened brain plasticity, when the brain can readily make new connections.

The work was done in a mouse model of the visual system, a classic model for understanding how the brain sets up its wiring in response to input from the outside world. But Takao Hensch, PhD, of the Neurobiology Program and Department of Neurology at Children’s, the study’s senior investigator, speculates that there may be similar factors from the auditory, olfactory and other sensory systems that help time critical periods. Timing is important, because the brain needs to rewire itself at the right moment -- when it's getting the optimal sensory input.

“If the timing is off, the brain won't set up its circuits properly,” Hensch says.

Being able to control the timing of critical periods in different parts of the brain could possibly ameliorate developmental disorders such as autism, in which researchers believe critical periods may be inappropriately accelerated or delayed. Retriggering a critical period might also help people learn more readily after childhood – acquiring a new language, developing musical abilities or recovering from stroke or brain injury, for example.

Interestingly, Hensch and colleagues found that the brain cells that switch on critical periods in the visual system (parvalbumin cells) don’t actually make Otx2 themselves. Instead, Otx2 is sent by the retina. In essence, the eye is telling the brain, "The eyes are ready and seeing properly -- you can rewire now."

"The eye is telling the brain when to become plastic, rather than the brain developing on its own clock," says Hensch, who is also a professor at Harvard Medical School and at Harvard University’s Department of Molecular & Cellular Biology. “The idea that this class of molecular messenger is passed from cell to cell is considered unorthodox in cell biology.” This idea, however, has long been advocated by Dr. Alain Prochiantz of the Ecole Normale Superieure (Paris) and College de France, Hensch’s collaborator and a coauthor on the study.

It was previously known that when parvalbumin cells mature, they set up inhibitory circuits in the cortex, balancing the existing excitatory circuits. Hensch and others have shown that setting up inhibitory circuits is key in launching critical periods. “Early excitatory input is important to make first contacts between neurons,” Hensch explains. “But then, at the next stage, you need inhibition.”

In the current study, Hensch and colleagues demonstrated that when mice are reared in the dark, thus getting no visual input, Otx2 remains in the retina. Only when the mice received full visual input did Otx2 begin to appear in the cortex, and only then did parvalbumin cells start to mature.

In other experiments, the researchers injected Otx2 directly into the cortex. The parvalbumin cells matured, even when the mice were kept in the dark. Finally, when Otx2 synthesis was blocked in the eye, parvalbumin cell functions failed to mature.

Otx2 has an unusual derivation: it is originally produced during embryonic development; without it, mice don't develop heads. Production then stops, but some days after birth, it reappears in parvalbumin cells. “The nervous system is recycling an embryonic factor to induce brain plasticity,” says Hensch.

Hensch, who last fall won the highly competitive NIH Director’s Pioneer Award, is also interested in the transport mechanism that propagates Otx2 from the retina to the cortex. He speculates that Otx2 itself could be a carrier for factors you’d want to deliver to the brain, envisioning eye drops for brain disorders such as schizophrenia, in which parvalbumin cells don't properly mature.

The study was funded by the Human Frontiers Science Program (Strasbourg), the Fondation pour La Recherche Medicale, and in part by RIKEN (Japan) and the Japanese Ministry of Science, Education and Technology (MEXT). Sayaka Sugiyama, PhD, was first author.

Children’s Hospital Boston is home to the world’s largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 500 scientists, including eight members of the National Academy of Sciences, 11 members of the Institute of Medicine and 12 members of the Howard Hughes Medical Institute comprise Children’s research community. Founded as a 20-bed hospital for children, Children’s Hospital Boston today is a 397-bed comprehensive center for pediatric and adolescent health care grounded in the values of excellence in patient care and sensitivity to the complex needs and diversity of children and families. Children’s also is the primary pediatric teaching affiliate of Harvard Medical School.

James Newton | Newswise Science News
Further information:
http://www.hms.harvard.edu/

Further reports about: Harvard Otx2 Otx2 synthesis brain plasticity cell biology

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>