Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trees Using Water More Efficiently as Atmospheric Carbon Dioxide Rises

11.07.2013
A study by scientists with the U.S. Forest Service, Harvard University and partners suggests that trees are responding to higher atmospheric carbon dioxide levels by becoming more efficient at using water.

The study, “Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise,” was published on-line today in the journal Nature. Dave Hollinger, a plant physiologist with the U.S. Forest Service’s Northern Research Station, is a co-author with lead author Trevor Keenan of Harvard University and colleagues from The Ohio State University, Indiana University, and the Institute of Meteorology and Climate in Germany. The article is available at: http://www.nature.com/nature

“Working with others, the Forest Service is developing knowledge that is essential to maintaining healthy, sustainable forests in a changing climate,” said Michael T. Rains, Director of the Northern Research Station. “We are striving to be at the forefront of delivering sound climate science to the public.”

Terrestrial plants remove carbon dioxide from the atmosphere through photosynthesis, a process that is accompanied by the loss of water vapor from leaves. The ratio of water loss to carbon gain, or water-use efficiency, is a key characteristic of ecosystem function that is central to the global cycles of water, energy and carbon.

Scientists analyzed direct, long-term measurements of whole-ecosystem carbon and water exchange and found a substantial increase in water-use efficiency in temperate and boreal forests of the Northern Hemisphere over the past two decades.

“Our analysis suggests that rising atmospheric carbon dioxide is having a direct and unexpectedly strong influence on ecosystem processes and biosphere-atmosphere interactions in temperate and boreal forests,” Hollinger said.

How efficient trees are in using water has implications for ecosystem function, services and feedbacks to the climate system. These include enhanced timber yields and improved water availability, which could partially offset the effects of future droughts. However, reduced evapotranspiration, or the combination of evaporation and plant transpiration from the land to the atmosphere, resulting from higher water-use efficiency could lead to higher air temperatures, decreased humidity, and decreased recycling of continental precipitation. This could cause increased continental freshwater runoff, along with drought in parts of the world that rely on water transpired in other regions.

Scientists analyzed data from seven sites in the Midwest and Northeastern United States that are part of the AmeriFlux network including the Forest Service’s Bartlett Experimental Forest in New Hampshire and the Howland Cooperating Experimental Forest in Maine and expanded the analysis to 14 additional forested sites in temperate and boreal regions. . Flux towers at these sites measure fluctuations in carbon dioxide uptake and water loss. The Northern Research Station operates flux towers at five experimental forests; in addition to the Bartlett and Howland Forests this work is continuing at the Silas Little Experimental Forest in New Jersey, the Marcell Experimental Forest in Grand Rapids, Minn., and the Baltimore Long-term Ecological Research Site.

The mission of the U.S. Forest Service is to sustain the health, diversity, and productivity of the nation’s forests and grasslands to meet the needs of present and future generations. The agency has either a direct or indirect role in stewardship of about 80 percent of our nation’s forests; 850 million acres including 100 million acres of urban forests where most Americans live. The mission of the Forest Service’s Northern Research Station is to improve people’s lives and help sustain the natural resources in the Northeast and Midwest through leading-edge science and effective information delivery.

Jane Hodgins | EurekAlert!
Further information:
http://www.fs.fed.us

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>