Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tree killers, yes, fire starters, no: Mountain pine beetles get a bad rap, study says

30.09.2014

Mountain pine beetles get a bad rap, and understandably so. The grain-of-rice-sized insects are responsible for killing pine trees over tens of millions of acres in the Western U.S. and Canada over the last decade.

But contrary to popular belief, these pests may not be to blame for more severe wildfires like those that have recently swept through the region. Instead, weather and topography play a greater role in the ecological severity of fires than these bark-boring beetles.

New research led by the University of Wisconsin-Madison and the Washington State Department of Natural Resources provides some of the first rigorous field data to test whether fires that burn in areas impacted by mountain pine beetles are more ecologically severe than in those not attacked by the native bug.

In a study published this week in the Proceedings of the National Academy of Sciences, UW-Madison zoology professor Monica Turner and her graduate student, Brian Harvey, show pine beetle outbreaks contributed little to the severity of six wildfires that affected more than 75,000 acres in the Northern Rocky Mountains in 2011.

They also show that the beetle outbreaks, which occurred from 2000 through 2010, have not directly impacted post-fire recovery of the forests. The study does not, however, address fire behavior, such as how quickly fires spread or how dangerous they are to fight.

While the findings may exonerate the insect scapegoats, they should also help ecosystem managers better respond to changes in the face of climate-driven disturbances, like drought and warmer temperatures.

Large, severe fires are typical in the lodgepole pine forests found throughout the region, even without mountain pine beetle outbreaks. However, as the climate has warmed, outbreaks and big fires have both become more common. The phenomenon of more beetles has meant more dead trees, and some have grown concerned about how beetle attacks and wildfires may interact.

"The conventional wisdom is that a forest of dead trees is a tinder box just waiting to burn up," says Turner, who has long studied the forest landscape of the Mountain West. "There were very little data out there but a lot of concern."

Forests attacked by bark beetles — which burrow into the bark of lodgepole pines to mate and incubate their larvae — can seem nothing more than ample kindling for a raging blaze, with their dead wood and dry, reddish-brown needles.

The burrows the beetles carve under the bark of pines, called galleries, choke off water and nutrient circulation in the trees. The trees die and, for the first couple of years, they hold on to their dry, lifeless needles. Scientists call this the "red stage," and some believe these trees could fuel more severe fires.

By year three, most beetle-attacked trees have entered the "gray stage," dropping their once green pine foliage, becoming needleless wood carcasses.

Earlier studies from Turner's group suggested that beetle outbreaks would not lead to more severe fires. But without actual fires, the interaction could not be tested.

However, in 2011, wildfires throughout eastern Idaho and western Montana — in forests that had experienced varying mountain pine beetle outbreak impacts — provided opportunity for the research team to begin to answer the question: Do the two disturbances, beetle attacks and wildfire, together change the ecological response of the forest to fire?

Fortunately for the team, among the burned areas studied were pine stands that had not been attacked by beetles. These areas served as controls. Others suffered a range of mortality from the beetles; in some stands, beetles killed nearly 90 percent of the trees prior to wildfire. The fires that raged also ran the spectrum of severity, allowing the researchers to compare a number of variables.

Some study plots comprised mostly live trees, while others contained mostly red-stage or gray-stage trees — allowing the researchers to assess whether plots with red-stage trees (with dry needles) experienced greater levels of fire severity than plots with mostly gray-stage trees (no needles), as they and others had expected.

The study team examined ecosystem indicators of fire severity, such as how many trees were killed by fire and how much char covered the forests.

Engaging in what Harvey calls "post-fire detective work," in 2012, the scientific team evaluated fire severity in each study plot and stripped sections of bark from over 10,000 trees to determine what killed them, beetles or fire. Beetle galleries can remain visible under the bark even after fire.

As they sifted through the blackened trees and forest floor, the team became covered with ash and soot.

"We looked like coal miners when we were done," says Harvey.

They found that the severity of the outbreak and whether trees were in the red or gray stage had almost no effect on fire severity under moderate burning conditions.

Only under more extreme fire-burning conditions — when it was hot, dry and windy — did areas with more beetle-killed trees show signs of more ecologically severe fires, such as more deeply burned trunks and crowns (the part of the tree that includes its limbs and needles). The presence of more gray-stage trees actually had a stronger impact on fire severity than the amount of red-stage trees, to the surprise of the scientists.

Overall, however, Turner says the effects of beetle outbreaks on fire severity took a back seat to stronger drivers — primarily weather and topography. Fire severity increased under more extreme weather, regardless of pre-fire outbreaks, and forest stands higher in the landscape burned more severely than those at lower elevation as fires moved uphill, building momentum.

"No one says beetle-killed forests won't burn," says Turner. "The data set looks at whether they burn with different severity compared to unattacked forests burning under similar conditions."

The team was also interested in whether beetle outbreaks slowed the recovery of the forests after fires. Lodgepole pines are adapted to fire, containing two types of seed-carrying cones: those that release seeds as soon as they mature and those that require fire to open, blanketing the forest floor with potential new life following a blaze.

By counting the number of post-fire tree seedlings in their plots, the researchers found very little beetle-related impact. Tree seedlings were most numerous where more of the fire-killed trees bore the fire-adapted, or serotinous, cones. Beetle-killed trees likely contributed to post-fire seedling establishment, too, as their seeds remain viable in cones if they are not consumed in fire. Only high-reaching char from tall flames reduced the number of seed-spreading cones.

The scientists emphasize the results may differ in other forest types or with different lengths of time between beetle outbreaks and fire.

"These are both natural disturbances, fire and beetle outbreaks," says Turner. "It's not surprising the ecosystem has these mechanisms to be resilient. What we as people see as catastrophes are not always catastrophes to the ecosystem."

###

The study was funded by Joint Fire Science Program Grants and the National Park Service/George Melendez Wright Climate Change Fellowship.

— Kelly April Tyrrell, ktyrrell2@wisc.edu, 608-262-9772

Monica Turner | Eurek Alert!
Further information:
http://www.wisc.edu/

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>