Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Treatments Waiting to be Discovered” Inside New Database

06.08.2014

Your genes are blueprints for proteins, and molecules called microRNA can help to determine how often these genetic blueprints are manufactured into proteins. Researchers often ask what microRNA regulates a gene related to disease. Or what gene is regulated by a microRNA found in sick patients?

The answers to these questions could help doctors and researchers manipulate protein levels in the body that cause disease, especially cancer. A University of Colorado Cancer Center study recently published in the top-ranked journal Nucleic Acids Research (NAR) describes a database named multiMiR, the most comprehensive database collecting information about microRNAs and their targets.


50 million data points along with sophisticated data analysis tools now live at new database, multiMiR.

Image: Flickr/ElifAyiter cc license.

“You can’t imagine the tangled web of data that describes the cause and effect relationships of microRNAs and genes. This multiMiR database will let researchers search efficiently through these relationships for pairings relevant to the diseases they study,” says Katerina Kechris, PhD, associate professor of Biostatistics and Informatics at the University of Colorado Denver, and one of the study’s senior authors.

In addition to assisting researchers search for relationships between microRNAs and their genetic targets, the database includes drugs known to affect these microRNAs and also lists diseases associated with microRNAs.

... more about:
»Cancer »Database »Medicine »combination »diseases »drugs »genes

“Right now, within this database, investigators can find clues to potential new treatments for various diseases including cancer,” says Dan Theodorescu, MD, PhD, professor of Surgery and Pharmacology at the CU School of Medicine, director of the University of Colorado Cancer Center and one of the study’s senior authors.

The project includes nearly 50 million records representing the combination of 14 previously existing microRNA data repositories. The multiMiR database also links to previous research results relevant to these microRNAs. multiMiR combines this functionality within the leading open-source statistical software, R, allowing for increased flexibility for analysis and accessibility by data analysts everywhere.

Basically, researchers can input names of microRNAs, genes, drugs, diseases or any combination thereof. Then the researcher can ask the database for validated or predicted genetic targets of microRNAs, or for validated/predicted microRNAs that regulate specific genes. Similar is true of diseases and drugs – informatics tools show which diseases are associated with microRNAs and which (if any) drugs have been linked to a specific miRNA queried.

Case studies described in the article show how microRNAs may affect voluntary alcohol consumption in mice, candidate genes within signaling pathways associated with chronic obstructive pulmonary disease, and the microRNA:gene interactions that influence bladder cancer.

“We need data and then we need clever ways to look at it otherwise we drown in the wealth of information,” Theodorescu says. “This new tool will allow us to ask new questions of more data with greater precision and get better, more insightful results that will ultimately help develop new approaches for patient treatment.”

This work supported in part by NIH grants 01CA075115, K01AA16922, R01AA021131, R01AA016957 and R24AA013162

Garth Sundem | Eurek Alert!
Further information:
http://www.coloradocancerblogs.org/treatments-waiting-discovered-inside-new-database/

Further reports about: Cancer Database Medicine combination diseases drugs genes

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

 
Latest News

Vortex laser offers hope for Moore's Law

29.07.2016 | Power and Electrical Engineering

Novel 'repair system' discovered in algae may yield new tools for biotechnology

29.07.2016 | Life Sciences

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>