Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transportation Energy Futures Study Reveals Potential for Deep Cuts to Petroleum Use and Carbon Emissions

20.03.2013
Collaborative NREL and ANL project reveals opportunities for 80% reductions by 2050
The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) and Argonne National Laboratory (ANL) today announced the release of the Transportation Energy Futures (TEF) study, an assessment of avenues to reach deep cuts in petroleum use and greenhouse gas (GHG) emissions in the transportation sector.

“Transportation is an engine of our economic strength, but it also represents a key challenge for the future of U.S. energy use,” NREL Senior Analyst Austin Brown said. “Transportation accounts for 71 percent of total U.S. petroleum consumption and 33 percent of our nation's total carbon emissions. It presents significant opportunities to cut oil dependence while taking a bite out of greenhouse gas emissions.”

The study revealed strategies to potentially reduce petroleum use and GHG emissions in the transportation sector by more than 80 percent by 2050. However, each of these opportunities faces significant challenges.

The TEF study also confirmed that there is no "silver bullet" for decreasing carbon emissions and petroleum use in transportation. Instead, deep reductions would involve an inclusive approach, combining strategies to:
Increase fuel economy for all types of vehicles
Reduce use of transportation while providing comparable service
Expand use of low-carbon fuels, including biofuels, as well as electricity and hydrogen

“The finding that there are many options increases our confidence that a clean transportation solution is possible in the long term,” Brown said.

The purpose of the TEF study was to address critical questions and inform domestic decisions about transportation energy strategies by identifying possible paths to a low-carbon, low-petroleum future for transportation, as well as the barriers that may block those paths. It can help inform decisions about investments in transportation energy research, and can also help policymakers if they choose to expand the role of advanced transportation technologies and systems. The study focuses on identifying opportunities related to energy efficiency and renewable energy in transportation.

Three major strategies were explored in the study: reduction of energy use through efficiency and demand management; increased use of electricity and hydrogen from renewable energy; and expanded use of biofuels.

It was found that energy efficiency improvements and measures to reduce transportation demand, without compromising service, have the potential to stop – or reverse – the growth in national transportation energy use, making it possible for competitive renewable energy supplies to provide an increasing share of energy.

Focus areas of the nine reports that are part of the TEF study include:

Light Duty Vehicles (personal cars and light trucks)

Deployment pathways issues including the development of, transition to, and challenges to advanced technology.
Non-cost barriers such as range anxiety, refueling availability, technology reliability, and lack of consumer familiarity.

Non-Light-Duty Vehicles (trucks, rail, aircraft, and other modes)
Opportunities to improve non-light-duty vehicle efficiency, including that of medium- and heavy-duty trucks, off-road vehicles and equipment, aircraft, marine vessels, and railways.
Opportunities for switching modes of transporting freight, such as moving freight from trucks to rail and ships.

Fuels

Infrastructure expansion required for deployment of low-GHG fuels, including electricity, biofuels, hydrogen, and natural gas.
Balance of biomass resource demand and supply, including allocations for various transportation fuels, electric generation, and other applications.

Transportation Demand
Opportunities to save energy and abate GHG emissions through community development and urban planning.
Trip reduction through mass transit, tele-working, tele-shopping, carpooling, and efficient driving.
Freight demand patterns, including trends in operational needs and projections of future use levels.

The TEF project was funded by DOE’s Office of Energy Efficiency and Renewable Energy. The study’s steering committee included the Environmental Protection Agency, the Department of Transportation, academic researchers, and industry associations. Additional input was provided by transportation consultants from Cambridge Systematics, Inc. For more information, visit the TEF Website.

NREL is the U.S. Department of Energy's primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for DOE by The Alliance for Sustainable Energy, LLC.

David Glickson | EurekAlert!
Further information:
http://www.nrel.gov

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>