Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transportation Energy Futures Study Reveals Potential for Deep Cuts to Petroleum Use and Carbon Emissions

20.03.2013
Collaborative NREL and ANL project reveals opportunities for 80% reductions by 2050
The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) and Argonne National Laboratory (ANL) today announced the release of the Transportation Energy Futures (TEF) study, an assessment of avenues to reach deep cuts in petroleum use and greenhouse gas (GHG) emissions in the transportation sector.

“Transportation is an engine of our economic strength, but it also represents a key challenge for the future of U.S. energy use,” NREL Senior Analyst Austin Brown said. “Transportation accounts for 71 percent of total U.S. petroleum consumption and 33 percent of our nation's total carbon emissions. It presents significant opportunities to cut oil dependence while taking a bite out of greenhouse gas emissions.”

The study revealed strategies to potentially reduce petroleum use and GHG emissions in the transportation sector by more than 80 percent by 2050. However, each of these opportunities faces significant challenges.

The TEF study also confirmed that there is no "silver bullet" for decreasing carbon emissions and petroleum use in transportation. Instead, deep reductions would involve an inclusive approach, combining strategies to:
Increase fuel economy for all types of vehicles
Reduce use of transportation while providing comparable service
Expand use of low-carbon fuels, including biofuels, as well as electricity and hydrogen

“The finding that there are many options increases our confidence that a clean transportation solution is possible in the long term,” Brown said.

The purpose of the TEF study was to address critical questions and inform domestic decisions about transportation energy strategies by identifying possible paths to a low-carbon, low-petroleum future for transportation, as well as the barriers that may block those paths. It can help inform decisions about investments in transportation energy research, and can also help policymakers if they choose to expand the role of advanced transportation technologies and systems. The study focuses on identifying opportunities related to energy efficiency and renewable energy in transportation.

Three major strategies were explored in the study: reduction of energy use through efficiency and demand management; increased use of electricity and hydrogen from renewable energy; and expanded use of biofuels.

It was found that energy efficiency improvements and measures to reduce transportation demand, without compromising service, have the potential to stop – or reverse – the growth in national transportation energy use, making it possible for competitive renewable energy supplies to provide an increasing share of energy.

Focus areas of the nine reports that are part of the TEF study include:

Light Duty Vehicles (personal cars and light trucks)

Deployment pathways issues including the development of, transition to, and challenges to advanced technology.
Non-cost barriers such as range anxiety, refueling availability, technology reliability, and lack of consumer familiarity.

Non-Light-Duty Vehicles (trucks, rail, aircraft, and other modes)
Opportunities to improve non-light-duty vehicle efficiency, including that of medium- and heavy-duty trucks, off-road vehicles and equipment, aircraft, marine vessels, and railways.
Opportunities for switching modes of transporting freight, such as moving freight from trucks to rail and ships.

Fuels

Infrastructure expansion required for deployment of low-GHG fuels, including electricity, biofuels, hydrogen, and natural gas.
Balance of biomass resource demand and supply, including allocations for various transportation fuels, electric generation, and other applications.

Transportation Demand
Opportunities to save energy and abate GHG emissions through community development and urban planning.
Trip reduction through mass transit, tele-working, tele-shopping, carpooling, and efficient driving.
Freight demand patterns, including trends in operational needs and projections of future use levels.

The TEF project was funded by DOE’s Office of Energy Efficiency and Renewable Energy. The study’s steering committee included the Environmental Protection Agency, the Department of Transportation, academic researchers, and industry associations. Additional input was provided by transportation consultants from Cambridge Systematics, Inc. For more information, visit the TEF Website.

NREL is the U.S. Department of Energy's primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for DOE by The Alliance for Sustainable Energy, LLC.

David Glickson | EurekAlert!
Further information:
http://www.nrel.gov

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>