Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transfusion Not Always Best Treatment for Anemia, Age of Stored Blood May Play a Role

13.10.2011
University of Kentucky researchers, including lead author Samy Selim of the Division of Cardiovascular Medicine and the Saha Cardiovascular Research Center, have recently published a paper suggesting that transfusion may not always be the best treatment for hospitalized patients with anemia. Results suggest the age of stored blood may be a factor in negative effects of transfusion.

The paper, "Plasma levels of sphingosine l-phosphate are strongly correlated with haemotocrit, but variably restored by red blood cell transfusions," appeared in a recent edition of the journal Clinical Science.

For many years, the traditional treatment for hospitalized patients in the United States who have developed anemia — whether associated with medical illness, surgical procedures or trauma — has been red blood cell transfusion, despite the absence of supporting data in many patient populations.

While still a life-saving measure in emergency situations such as acute bleeding, emerging evidence suggests that transfusions may, in fact, be associated with risk beyond commonly-held concerns of microbial transmission and acute reactions. Researchers are currently trying to understand the mechanism behind this observed deleterious effect of transfusion, which seems to correlate with the duration of storage of blood (blood for transfusion may currently be stored up to 42 days).

Red blood cells carry and deliver an important biologically active lipid mediator, sphingosine 1-phosphate (S1P), which is required for maintaining the integrity of blood vessels.

In the study, investigators confirmed that individuals with anemia have lower circulating levels of S1P. They found that transfusion to correct anemia does not always restore levels of S1P and the inability to restore S1P may be associated with the age of the transfused blood. Levels of S1P decrease during storage of red blood cells, which may explain why transfusion of older blood is less able to restore S1P levels.

These findings could help to explain some of the reasons that blood transfusions can have adverse consequences. Future efforts may focus on supplementing red blood cells with S1P in an attempt to improve outcomes in transfusion.

Study authors include lead author Samy Selim; Susan Smyth, chief of the Division of Cardiovascular Medicine and a core member of the Saha CVRC research faculty; Manjula Sunkara, Abdlghaffar K. Salous, Steve W. Leung, Alison Bailey, Andrew J. Morris, and Charles L. Campbell, all of the UK Division of Cardiovascular Medicine; Richard Charnigos of the UK College of Public Health; and Evgeny V. Berdyshev of the University of Illinois at Chicago.

Allison Elliott | EurekAlert!
Further information:
http://www.uky.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>