Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transfusion Not Always Best Treatment for Anemia, Age of Stored Blood May Play a Role

13.10.2011
University of Kentucky researchers, including lead author Samy Selim of the Division of Cardiovascular Medicine and the Saha Cardiovascular Research Center, have recently published a paper suggesting that transfusion may not always be the best treatment for hospitalized patients with anemia. Results suggest the age of stored blood may be a factor in negative effects of transfusion.

The paper, "Plasma levels of sphingosine l-phosphate are strongly correlated with haemotocrit, but variably restored by red blood cell transfusions," appeared in a recent edition of the journal Clinical Science.

For many years, the traditional treatment for hospitalized patients in the United States who have developed anemia — whether associated with medical illness, surgical procedures or trauma — has been red blood cell transfusion, despite the absence of supporting data in many patient populations.

While still a life-saving measure in emergency situations such as acute bleeding, emerging evidence suggests that transfusions may, in fact, be associated with risk beyond commonly-held concerns of microbial transmission and acute reactions. Researchers are currently trying to understand the mechanism behind this observed deleterious effect of transfusion, which seems to correlate with the duration of storage of blood (blood for transfusion may currently be stored up to 42 days).

Red blood cells carry and deliver an important biologically active lipid mediator, sphingosine 1-phosphate (S1P), which is required for maintaining the integrity of blood vessels.

In the study, investigators confirmed that individuals with anemia have lower circulating levels of S1P. They found that transfusion to correct anemia does not always restore levels of S1P and the inability to restore S1P may be associated with the age of the transfused blood. Levels of S1P decrease during storage of red blood cells, which may explain why transfusion of older blood is less able to restore S1P levels.

These findings could help to explain some of the reasons that blood transfusions can have adverse consequences. Future efforts may focus on supplementing red blood cells with S1P in an attempt to improve outcomes in transfusion.

Study authors include lead author Samy Selim; Susan Smyth, chief of the Division of Cardiovascular Medicine and a core member of the Saha CVRC research faculty; Manjula Sunkara, Abdlghaffar K. Salous, Steve W. Leung, Alison Bailey, Andrew J. Morris, and Charles L. Campbell, all of the UK Division of Cardiovascular Medicine; Richard Charnigos of the UK College of Public Health; and Evgeny V. Berdyshev of the University of Illinois at Chicago.

Allison Elliott | EurekAlert!
Further information:
http://www.uky.edu

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>