Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transfusion Not Always Best Treatment for Anemia, Age of Stored Blood May Play a Role

13.10.2011
University of Kentucky researchers, including lead author Samy Selim of the Division of Cardiovascular Medicine and the Saha Cardiovascular Research Center, have recently published a paper suggesting that transfusion may not always be the best treatment for hospitalized patients with anemia. Results suggest the age of stored blood may be a factor in negative effects of transfusion.

The paper, "Plasma levels of sphingosine l-phosphate are strongly correlated with haemotocrit, but variably restored by red blood cell transfusions," appeared in a recent edition of the journal Clinical Science.

For many years, the traditional treatment for hospitalized patients in the United States who have developed anemia — whether associated with medical illness, surgical procedures or trauma — has been red blood cell transfusion, despite the absence of supporting data in many patient populations.

While still a life-saving measure in emergency situations such as acute bleeding, emerging evidence suggests that transfusions may, in fact, be associated with risk beyond commonly-held concerns of microbial transmission and acute reactions. Researchers are currently trying to understand the mechanism behind this observed deleterious effect of transfusion, which seems to correlate with the duration of storage of blood (blood for transfusion may currently be stored up to 42 days).

Red blood cells carry and deliver an important biologically active lipid mediator, sphingosine 1-phosphate (S1P), which is required for maintaining the integrity of blood vessels.

In the study, investigators confirmed that individuals with anemia have lower circulating levels of S1P. They found that transfusion to correct anemia does not always restore levels of S1P and the inability to restore S1P may be associated with the age of the transfused blood. Levels of S1P decrease during storage of red blood cells, which may explain why transfusion of older blood is less able to restore S1P levels.

These findings could help to explain some of the reasons that blood transfusions can have adverse consequences. Future efforts may focus on supplementing red blood cells with S1P in an attempt to improve outcomes in transfusion.

Study authors include lead author Samy Selim; Susan Smyth, chief of the Division of Cardiovascular Medicine and a core member of the Saha CVRC research faculty; Manjula Sunkara, Abdlghaffar K. Salous, Steve W. Leung, Alison Bailey, Andrew J. Morris, and Charles L. Campbell, all of the UK Division of Cardiovascular Medicine; Richard Charnigos of the UK College of Public Health; and Evgeny V. Berdyshev of the University of Illinois at Chicago.

Allison Elliott | EurekAlert!
Further information:
http://www.uky.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>