Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Of traffic jams, beach sands and the zero-temperature jamming transition

14.05.2009
Researchers in condensed matter physics at the University of Pennsylvania and the University of Chicago have created an experimental and computer model to study how jamming, the physical process in which collections of particles are crammed together to behave as solids, might affect the behavior of systems in which thermal motion is important, such as molecules in a glass.

The study presents the first experimental evidence of a vestige of the zero temperature jamming transition — the density at which large, loose objects such as gas bubbles in liquid, grains of sand or cars become rigid solids such as foam, sand dunes or traffic jams — in a system of small particles where thermal energy is important.

This demonstrates that despite the fact that the size of constituent particles differ by many orders of magnitude, molecules in a glass retain an echo of the phenomenon of how boulders coming to rest to form a solid rock pile.

"We have been testing the speculation that jamming has a common origin in these different systems," Andrea Liu, an author of the study and professor in the Department of Physics at Penn, said.

The paper appears in the current issue of the journal Nature.

The idea of jamming is that slow relaxations in many different systems, ranging from glass-forming liquids to suspensions of particles such as bits of ice in a milkshake to foams and granular materials, can be viewed in a common framework. For example, one can define jamming to occur when a system develops a yield stress or extremely long stress relaxation time in a disordered state. Foams and granular materials flow when a large shear stress is applied but jam when the shear stress is lowered below the yield stress. But systems of large particles such as foams and granular materials can be considered zero-temperature systems because the energy associated with a typical temperature, such as room temperature, is negligible compared to the energy required to shift the particles. As a result, it is not known whether the jamming of such systems is related to the jamming of systems of small particles, such as molecular liquids, which jam as temperature is lowered through the glass transition.

The Penn study involved mathematical computer simulations and an experiment to touch on this very general problem. The analysis focuses on an intuitive feature of the system, the separation between neighboring spheres, and, in particular, on how this separation evolves as the system becomes jammed. By confining soft microspheres that swell and shrink by changing the temperature of the system and that are small enough so that thermal motion is important, researchers were able to study how the separation distance evolves as the volume occupied by the spheres is varied through the jamming transition. The experiments discovered a vestige, at non-zero temperature, of one of the important structural signatures to arise at the zero-temperature jamming transition.

The computer simulations and experiments provide new clues about the connections between jamming and the glass transition and provide a concrete experimental route to explore them.

"Most people have experienced jamming and unjamming in one way or another, by sitting in a traffic jam or tapping a container of flour to get the powder to flow," said. "But we also use jamming to make the strongest metallic alloys and toughest plastics. Elucidation of the principles of jamming, therefore, holds potential to be of practical importance and will most certainly be of interest to anyone who has wondered why honey ceases to flow when it is cooled in a refrigerator or why earth or snow can suddenly form avalanches with catastrophic results."

The study was funded by the Department of Energy and by the National Science Foundation, which supports the Materials Research Science and Engineering Centers at Penn and the University of Chicago. The research team also acknowledges the support of the Teraport computer cluster at Chicago.

The study was conducted by Liu, Zexin Zhang, Daniel T. N. Chen, Ahmed M. Alsayed, Peter Yunker and Arjun G. Yodh of the Department of Physics and Astronomy in Penn's School of Arts and Sciences; Ning Xu, of Penn and the James Franck Institute at Chicago; Sidney R. Nagel of the James Franck Institute; Kevin B. Aptowicz of the Department of Physics at West Chester University; and Piotr Habdas of the Department of Physics at Saint Joseph's University.

Jordan Reese | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>