Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Of traffic jams, beach sands and the zero-temperature jamming transition

14.05.2009
Researchers in condensed matter physics at the University of Pennsylvania and the University of Chicago have created an experimental and computer model to study how jamming, the physical process in which collections of particles are crammed together to behave as solids, might affect the behavior of systems in which thermal motion is important, such as molecules in a glass.

The study presents the first experimental evidence of a vestige of the zero temperature jamming transition — the density at which large, loose objects such as gas bubbles in liquid, grains of sand or cars become rigid solids such as foam, sand dunes or traffic jams — in a system of small particles where thermal energy is important.

This demonstrates that despite the fact that the size of constituent particles differ by many orders of magnitude, molecules in a glass retain an echo of the phenomenon of how boulders coming to rest to form a solid rock pile.

"We have been testing the speculation that jamming has a common origin in these different systems," Andrea Liu, an author of the study and professor in the Department of Physics at Penn, said.

The paper appears in the current issue of the journal Nature.

The idea of jamming is that slow relaxations in many different systems, ranging from glass-forming liquids to suspensions of particles such as bits of ice in a milkshake to foams and granular materials, can be viewed in a common framework. For example, one can define jamming to occur when a system develops a yield stress or extremely long stress relaxation time in a disordered state. Foams and granular materials flow when a large shear stress is applied but jam when the shear stress is lowered below the yield stress. But systems of large particles such as foams and granular materials can be considered zero-temperature systems because the energy associated with a typical temperature, such as room temperature, is negligible compared to the energy required to shift the particles. As a result, it is not known whether the jamming of such systems is related to the jamming of systems of small particles, such as molecular liquids, which jam as temperature is lowered through the glass transition.

The Penn study involved mathematical computer simulations and an experiment to touch on this very general problem. The analysis focuses on an intuitive feature of the system, the separation between neighboring spheres, and, in particular, on how this separation evolves as the system becomes jammed. By confining soft microspheres that swell and shrink by changing the temperature of the system and that are small enough so that thermal motion is important, researchers were able to study how the separation distance evolves as the volume occupied by the spheres is varied through the jamming transition. The experiments discovered a vestige, at non-zero temperature, of one of the important structural signatures to arise at the zero-temperature jamming transition.

The computer simulations and experiments provide new clues about the connections between jamming and the glass transition and provide a concrete experimental route to explore them.

"Most people have experienced jamming and unjamming in one way or another, by sitting in a traffic jam or tapping a container of flour to get the powder to flow," said. "But we also use jamming to make the strongest metallic alloys and toughest plastics. Elucidation of the principles of jamming, therefore, holds potential to be of practical importance and will most certainly be of interest to anyone who has wondered why honey ceases to flow when it is cooled in a refrigerator or why earth or snow can suddenly form avalanches with catastrophic results."

The study was funded by the Department of Energy and by the National Science Foundation, which supports the Materials Research Science and Engineering Centers at Penn and the University of Chicago. The research team also acknowledges the support of the Teraport computer cluster at Chicago.

The study was conducted by Liu, Zexin Zhang, Daniel T. N. Chen, Ahmed M. Alsayed, Peter Yunker and Arjun G. Yodh of the Department of Physics and Astronomy in Penn's School of Arts and Sciences; Ning Xu, of Penn and the James Franck Institute at Chicago; Sidney R. Nagel of the James Franck Institute; Kevin B. Aptowicz of the Department of Physics at West Chester University; and Piotr Habdas of the Department of Physics at Saint Joseph's University.

Jordan Reese | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>