Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trace amounts of microbe-killing molecules predict chronic granulomatous disease survival

30.12.2010
NIH study could improve care for chronic granulomatous disease

Investigators at the National Institutes of Health have observed that the survival rate of people with a rare immunodeficiency disease called chronic granulomatous disease (CGD) is greatly improved when even very low levels of microbe-killing molecules are present. Because production of these molecules, made by an enzyme called NADPH oxidase, can be predicted from genetic analysis, a patient's risk for severe CGD could be assessed very early in life, allowing for more personalized treatment, say the researchers.

The study was conducted at the NIH Clinical Center and led by researchers from the National Institute of Allergy and Infectious Diseases (NIAID), part of the NIH, and their associated contract labs at SAIC-Frederick Inc. The study is available online in the New England Journal of Medicine.

"Advances in treatment of CGD have made it possible for people with this once-fatal disease of early childhood to survive into adulthood; however, the disease remains difficult to manage," says NIAID Director Anthony S. Fauci, M.D. "Having a marker to help predict disease prognosis will enable physicians to recommend treatment options that are more tailored to the needs of individual patients."

People with CGD have increased susceptibility to infections caused by certain bacteria, such as Staphylococcus aureus, and fungi, such as Aspergillus. They can have abscesses in the lungs, liver, spleen, bones or skin. Those with severe disease also can have tissue masses, called granulomas, which can obstruct the bowel or urinary tract. CGD affects an estimated 1,200 people in the United States and approximately 25,000 people worldwide.

The disease is caused by inherited mutations in any one of five different genes required by immune cells to make the NADPH oxidase enzyme, which in turn makes superoxide, an oxygen-derived molecule that immune cells use to destroy harmful bacteria and fungi. All CGD patients have impaired superoxide production. Some make a little superoxide, while others make none. The research team found that the level of superoxide production was linked to the type of mutation in the NADPH oxidase gene, and that the more superoxide a patient with CGD can make, the less severe the disease and the greater the life expectancy.

Until now, the severity of CGD has been linked only to how people inherit the NADPH oxidase gene mutation. If people inherit the mutation as an autosomal recessive trait, meaning that two copies of the abnormal gene, one from each parent, are present, the disease has generally been less severe than in those who inherit the mutation as an X-linked trait, meaning that the abnormal gene is located on the female sex chromosome. The majority of people with CGD inherit the mutation as an X-linked trait.

For their study, the NIH team tested the level of superoxide production by immune cells isolated from blood samples taken from 287 people with CGD, aged 1 to 64 years old, compared with superoxide production in healthy people. Some tests dated back to 1993, though patients and families affected by CGD have come to the NIH Clinical Center for treatment since the 1970s.

The NIH researchers used methods that could detect even trace amounts of superoxide, and grouped people with CGD based on the amount of superoxide made by the immune cells. The patients who produced the highest levels of superoxide had the highest survival rates, whereas those who produced the lowest levels of superoxide had the lowest survival rates.

"By precisely measuring superoxide production, we observed that even tiny residual amounts, at levels below what doctors paid attention to in the past, had a significant impact on patient survival," says John Gallin, M.D., director of the NIH Clinical Center, chief of the Clinical Pathophysiology Section of the NIAID Laboratory of Host Defenses, and senior author on the paper.

Treatment of CGD consists of lifelong antibiotics and antifungal medications. Some people also receive injections with interferon-gamma, a protein that can stimulate the immune cells to fight infections. For people with the most severe forms of CGD, bone marrow transplantation is a treatment option, but it carries potential complications that can make patients and their families reluctant to elect this therapy.

Based on the research team's observations, doctors should be able to use DNA gene-typing results to help identify those patients who are candidates for more aggressive treatments, including possible bone marrow transplantation. Bone marrow transplantation replaces the immune cells of people with CGD, which produce no or reduced amounts of microbe-killing superoxide, with healthy immune cells. In addition, therapies designed to promote NADPH oxidase function might reduce CGD severity. Therapies exist to stimulate NADPH oxidase but none are used to treat CGD.

"This study is a great example of the special strengths of the Clinical Center," comments Dr. Gallin. "We have worked for over three decades with patients with CGD, which at one time was almost entirely fatal, and have seen vast improvements in care and treatment. This work now gives us another tool to help individuals fight this disease."

Additional support for this research was provided by the National Institute of Diabetes and Digestive and Kidney Diseases and the National Cancer Institute, also components of NIH, and SAIC-Frederick Inc.

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at www.niaid.nih.gov.

NIDDK, a component of the NIH, conducts and supports research in diabetes and other endocrine and metabolic diseases; digestive diseases, nutrition, and obesity; and kidney, urologic, and hematologic diseases. Spanning the full spectrum of medicine and afflicting people of all ages and ethnic groups, these diseases encompass some of the most common, severe, and disabling conditions affecting Americans. For more information about NIDDK and its programs, see www.niddk.nih.gov.

NCI leads the National Cancer Program and the NIH effort to dramatically reduce the burden of cancer and improve the lives of cancer patients and their families, through research into prevention and cancer biology, the development of new interventions, and the training and mentoring of new researchers. For more information about cancer, please visit the NCI Web site at www.cancer.gov or call NCI's Cancer Information Service at 1-800-4-CANCER (1-800-422-6237).

The National Institutes of Health (NIH)—The Nation's Medical Research Agency—includes 27 Institutes and Centers and is a component of the U. S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

Reference: DB Kuhns et al. Residual NADPH oxidase and survival in chronic granulomatous disease. New England Journal of Medicine. DOI: 10.1056/NEJMoa1007097 (2010).

Julie Wu | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>