Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toddlers' aggression is strongly associated with genetic factors

21.01.2014
New study provides greater understanding of how to address childhood aggression

The development of physical aggression in toddlers is strongly associated genetic factors and to a lesser degree with the environment, according to a new study led by Eric Lacourse of the University of Montreal and its affiliated CHU Sainte-Justine Hospital. Lacourse's worked with the parents of identical and non-identical twins to evaluate and compare their behaviour, environment and genetics.

"The gene-environment analyses revealed that early genetic factors were pervasive in accounting for developmental trends, explaining most of the stability and change in physical aggression, " Lacourse said. "However, it should be emphasized that these genetic associations do not imply that the early trajectories of physical aggression are set and unchangeable. Genetic factors can always interact with other factors from the environment in the causal chain explaining any behaviour."

Over the past 25 years, research on early development of physical aggression has been highly influenced by social learning theories that suggest the onset and development of physical aggression is mainly determined by accumulated exposure to aggressive role models in the social environment and the media. However, the results of studies on early childhood physical aggression indicate that physical aggression starts during infancy and peaks between the ages of 2 and 4. Although for most children the use of physical aggression initiated by the University of Montreal team peaks during early childhood, these studies also show that there are substantial differences in both frequency at onset and rate of change of physical aggression due to the interplay of genetic and environmental factors over time. Genetically informed studies of disruptive behavior and different forms of aggression across the lifespan generally conclude that genetic factors account for approximately 50% of the variance in the population.

Lacourse and his colleagues posited and tested three general patterns regarding the developmental roles of genetic and environmental factors in physical aggression. First, the most consensual and general point of view is that both sources of influence are ubiquitous and involved in the stability of physical aggression. Second, a "genetic set point" model suggests a single set of genetic factors could account for the level of physical aggression across time. A third pattern labeled 'genetic maturation' postulates new sources of genetic and environmental influences with age. "According to the genetic maturation hypothesis, new environmental contributions to physical aggression could be of short duration in contrast to genetic factors," Lacourse explained.

About the twins cohort

This twin study was initiated by Michel Boivin of Laval University and Richard Tremblay, who is also affiliated with the University of Montreal and University College Dublin. All parents of twins born between April 1995 and December 1998 in the Greater Montreal area (Canada) were invited to participate, which resulted in the participation of 667 monozygotic and dizygotic twin pairs. Monozygotic means the twins originated from the same embryo – they are genetically identical. Dizogytic means they developed in separate embryos, meaning they are not identical.

Mothers were ask to rate their twins physical aggression, by reporting behaviour such as hitting, biting, kicking and fighting, at the ages of 20, 32 and 50 months. "The results of the gene-environment analyses provided some support for the genetic set-point hypotheses, but mostly for the genetic maturation hypotheses," Lacourse said. "Genetic factors always explained a substantial part of individual differences in physical aggression. More generally, the limited role of shared environmental factors in physical aggression clashes with the results of studies of singletons in which many family or parent level factors were found to predict developmental trajectories of physical aggression during preschool." Our results suggest that the effect of those factors may not be as direct as was previously though.

Long-term studies of physical aggression clearly show that most children, adolescent and adults eventually learn to use alternatives to physical aggression. "Because early childhood propensities may evoke negative responses from parents and peers, and consequently create contexts where the use of physical aggression is maintained and reinforced, early physical aggression needs to be dealt with care," Lacourse said. "These cycles of aggression between children and siblings or parents, as well as between children and their peers, could support the development of chronic physical aggression." We are presently exploring the impact of these gene and social environment interactions.

###

About this study

Eric Lacourse, PhD, Michel Boivin, PhD, Mara Brendgen, PhD, Amélie Petitclerc, PhD, Alain Girard, MSc, Frank Vitaro, PhD, Stéphane Paquin, PhD candidate, Isabelle Ouellet-Morin, PhD, Ginette Dionne, PhD and Richard E. Tremblay, PhD published "A longitudinal twin study of physical aggression during early childhood: Evidence for a developmentally dynamic genome" in Psychological Medicine on January 21, 2014.

This research was supported by grants from the National Health Research Development Program, the Social Sciences and Humanities Research Council of Canada, the Quebec Ministry of Health and Social Services, the Canadian Institutes of Health Research, the Canada Research Chair program, the Fonds Québécois de la Recherche sur la Société et la Culture, and the Fonds de la Recherche en Santé du Québec.

E. Lacourse, M. Boivin, M. Brendgen, A. Girard, F. Vitaro, S. Paquin, I. Ouellet-Morin, G. Dionne, and R. E. Tremblay, are affiliated with Research Unit on Children's Psychosocial Adjustment, Ste-Justine Hospital Research Center, affiliated with the University of Montreal. E. Lacourse and S. Paquin are affiliated with the University of Montreal's Department of Sociology, F. Vitaro with its Department of Psychoeducation, and I. Ouellet-Morin with its School of Criminology and the university's affiliated Mental Health Institute of Montreal Research Center. A. Petitclerc is affiliated with the National Center for Children and Families, Teachers College at Columbia University. M. Boivin and G. Dionne are affiliated with the School of Psychology at Laval University. M. Brendgen is affiliated with the Department of Psychology at Université du Québec. R. E. Tremblay is also affiliated with the University of Montreal's departments of psychology and pediatrics and with the School of Public Health, Physiotherapy and Population Science at University College Dublin, Ireland. The University of Montreal is officially known as Université de Montréal.

Julie Gazaille | EurekAlert!
Further information:
http://www.umontreal.ca

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

New Test for Rare Immunodeficiency

23.08.2017 | Life Sciences

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>