Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toddlers' aggression is strongly associated with genetic factors

21.01.2014
New study provides greater understanding of how to address childhood aggression

The development of physical aggression in toddlers is strongly associated genetic factors and to a lesser degree with the environment, according to a new study led by Eric Lacourse of the University of Montreal and its affiliated CHU Sainte-Justine Hospital. Lacourse's worked with the parents of identical and non-identical twins to evaluate and compare their behaviour, environment and genetics.

"The gene-environment analyses revealed that early genetic factors were pervasive in accounting for developmental trends, explaining most of the stability and change in physical aggression, " Lacourse said. "However, it should be emphasized that these genetic associations do not imply that the early trajectories of physical aggression are set and unchangeable. Genetic factors can always interact with other factors from the environment in the causal chain explaining any behaviour."

Over the past 25 years, research on early development of physical aggression has been highly influenced by social learning theories that suggest the onset and development of physical aggression is mainly determined by accumulated exposure to aggressive role models in the social environment and the media. However, the results of studies on early childhood physical aggression indicate that physical aggression starts during infancy and peaks between the ages of 2 and 4. Although for most children the use of physical aggression initiated by the University of Montreal team peaks during early childhood, these studies also show that there are substantial differences in both frequency at onset and rate of change of physical aggression due to the interplay of genetic and environmental factors over time. Genetically informed studies of disruptive behavior and different forms of aggression across the lifespan generally conclude that genetic factors account for approximately 50% of the variance in the population.

Lacourse and his colleagues posited and tested three general patterns regarding the developmental roles of genetic and environmental factors in physical aggression. First, the most consensual and general point of view is that both sources of influence are ubiquitous and involved in the stability of physical aggression. Second, a "genetic set point" model suggests a single set of genetic factors could account for the level of physical aggression across time. A third pattern labeled 'genetic maturation' postulates new sources of genetic and environmental influences with age. "According to the genetic maturation hypothesis, new environmental contributions to physical aggression could be of short duration in contrast to genetic factors," Lacourse explained.

About the twins cohort

This twin study was initiated by Michel Boivin of Laval University and Richard Tremblay, who is also affiliated with the University of Montreal and University College Dublin. All parents of twins born between April 1995 and December 1998 in the Greater Montreal area (Canada) were invited to participate, which resulted in the participation of 667 monozygotic and dizygotic twin pairs. Monozygotic means the twins originated from the same embryo – they are genetically identical. Dizogytic means they developed in separate embryos, meaning they are not identical.

Mothers were ask to rate their twins physical aggression, by reporting behaviour such as hitting, biting, kicking and fighting, at the ages of 20, 32 and 50 months. "The results of the gene-environment analyses provided some support for the genetic set-point hypotheses, but mostly for the genetic maturation hypotheses," Lacourse said. "Genetic factors always explained a substantial part of individual differences in physical aggression. More generally, the limited role of shared environmental factors in physical aggression clashes with the results of studies of singletons in which many family or parent level factors were found to predict developmental trajectories of physical aggression during preschool." Our results suggest that the effect of those factors may not be as direct as was previously though.

Long-term studies of physical aggression clearly show that most children, adolescent and adults eventually learn to use alternatives to physical aggression. "Because early childhood propensities may evoke negative responses from parents and peers, and consequently create contexts where the use of physical aggression is maintained and reinforced, early physical aggression needs to be dealt with care," Lacourse said. "These cycles of aggression between children and siblings or parents, as well as between children and their peers, could support the development of chronic physical aggression." We are presently exploring the impact of these gene and social environment interactions.

###

About this study

Eric Lacourse, PhD, Michel Boivin, PhD, Mara Brendgen, PhD, Amélie Petitclerc, PhD, Alain Girard, MSc, Frank Vitaro, PhD, Stéphane Paquin, PhD candidate, Isabelle Ouellet-Morin, PhD, Ginette Dionne, PhD and Richard E. Tremblay, PhD published "A longitudinal twin study of physical aggression during early childhood: Evidence for a developmentally dynamic genome" in Psychological Medicine on January 21, 2014.

This research was supported by grants from the National Health Research Development Program, the Social Sciences and Humanities Research Council of Canada, the Quebec Ministry of Health and Social Services, the Canadian Institutes of Health Research, the Canada Research Chair program, the Fonds Québécois de la Recherche sur la Société et la Culture, and the Fonds de la Recherche en Santé du Québec.

E. Lacourse, M. Boivin, M. Brendgen, A. Girard, F. Vitaro, S. Paquin, I. Ouellet-Morin, G. Dionne, and R. E. Tremblay, are affiliated with Research Unit on Children's Psychosocial Adjustment, Ste-Justine Hospital Research Center, affiliated with the University of Montreal. E. Lacourse and S. Paquin are affiliated with the University of Montreal's Department of Sociology, F. Vitaro with its Department of Psychoeducation, and I. Ouellet-Morin with its School of Criminology and the university's affiliated Mental Health Institute of Montreal Research Center. A. Petitclerc is affiliated with the National Center for Children and Families, Teachers College at Columbia University. M. Boivin and G. Dionne are affiliated with the School of Psychology at Laval University. M. Brendgen is affiliated with the Department of Psychology at Université du Québec. R. E. Tremblay is also affiliated with the University of Montreal's departments of psychology and pediatrics and with the School of Public Health, Physiotherapy and Population Science at University College Dublin, Ireland. The University of Montreal is officially known as Université de Montréal.

Julie Gazaille | EurekAlert!
Further information:
http://www.umontreal.ca

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New technique could make captured carbon more valuable

15.12.2017 | Life Sciences

First-of-its-kind chemical oscillator offers new level of molecular control

15.12.2017 | Life Sciences

A chip for environmental and health monitoring

15.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>