Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny levels of carbon monoxide damage fetal brain

26.06.2009
UCLA study suggests need for tighter regulation of car exhaust, home heaters

A UCLA study has discovered that chronic exposure during pregnancy to miniscule levels of carbon monoxide damages the cells of the fetal brain, resulting in permanent impairment. The journal BMC (BioMed Central) Neuroscience published the findings June 22 in its online edition.

"We expected the placenta to protect fetuses from the mother's exposure to tiny amounts of carbon monoxide," said John Edmond, professor emeritus of biological chemistry at the David Geffen School of Medicine at UCLA. "But we found that not to be the case."

The researchers exposed pregnant rats to 25 parts per million carbon monoxide in the air, an exposure level established as safe by Cal/OSHA, California's division of occupational health and safety.

Dr. Ivan Lopez, UCLA associate professor of head and neck surgery, tested the rats' litters 20 days after birth. Rats born to animals who had inhaled the gas suffered chronic oxidative stress, a harmful condition caused by an excess of harmful free radicals or insufficient antioxidants.

"Oxidative stress damaged the baby rats' brain cells, leading to a drop in proteins essential for proper function," said Lopez. "Oxidative stress is a risk factor linked to many disorders, including autism, cancer, Alzheimer's, Parkinson's, Lou Gehrig's disease, multiple sclerosis and cardiovascular disease. We know that it exacerbates disease."

"We believe that the minute levels of carbon monoxide in the mother rats' environment made their offspring more vulnerable to illness," added Edmond. "Our findings highlight the need for policy makers to re-examine the regulation of carbon monoxide."

Tobacco smoke, gas heaters, stoves and ovens all emit carbon monoxide, which can rise to high concentrations in well-insulated homes. Infants and children are particularly vulnerable to carbon monoxide exposure because they spend a great deal of time in the home.

No policies exist to regulate the gas in the home. Most commercial home monitors sound an alarm only hours after concentrations reaches 70 parts per million--nearly three times the 25 parts per million limit set by Cal/OSHA.

A grant from the University of California's Tobacco-related Disease Research Program supported the research.

Elaine Schmidt | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>