Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny early stage ovarian tumors define early detection challenge

28.07.2009
A new study by Howard Hughes Medical Institute researchers shows that most early-stage ovarian tumors exist for years at a size that is a thousand times smaller than existing tests can detect reliably.

But the researchers say their findings also point to new opportunities for detecting ovarian cancer—a roughly four-year window during which most tumors are big enough to be seen with a microscope, but have not yet spread.

"Our work provides a picture of the early events in the life of an ovarian tumor, before the patient knows it's there," says Howard Hughes Medical Institute researcher Patrick O. Brown. "It shows that there is a long window of opportunity for potentially life-saving early detection of this disease, but that the tumor spreads while it is still much too small to be detected by any of the tests that have been developed or proposed to date."

According to the American Cancer Society, some 15,000 women in the United States and 140,000 women worldwide die from ovarian cancer each year. The vast majority of these deaths are from cancers of the serous type, which are usually discovered only after the cancer has spread.

"Instead of typically detecting these cancers at a very advanced stage, detecting them at an early stage would be enormous in terms of saving lives," says Brown, who is at Stanford University School of Medicine. Early detection would enable surgeons to remove a tumor before it spreads, he adds.

The article—co-authored by Chana Palmer of the Canary Foundation, a nonprofit organization focused on early cancer detection—was published July 28, 2009, in the open access journal PLoS Medicine. (The complete article is available online at http://medicine.plosjournals.org/perlserv/?request=get-document&doi=10000114)

"Like almost everything with cancer … the more closely you look at the problem, the harder it looks," Brown says. "That's not to say that I don't believe it's a solvable problem. It's just a difficult one."

In the quest to develop early detection methods for ovarian cancer, Brown says, science hasn't had a firm grasp on its target. So he and Palmer took advantage of published data on ovarian tumors to generate a better understanding of how the cancer progresses in its earliest stages.

The team analyzed data on serous-type ovarian tumors that were discovered when apparently healthy women at high genetic risk for ovarian cancer had their ovaries and fallopian tubes removed prophylactically. Most of the tumors were microscopic in size; they were not detected when the excised tissue was examined with the naked eye.

The analysis uncovered a wealth of unexplored information. Thirty-seven of the early tumors had been precisely measured when they were excised – providing new details about the size of the tumors when they were developing prior to intervention, Brown says. By extrapolating from this "occult" size distribution to the size distribution of larger, clinically evident tumors, the researchers were able to develop a model of how the tumors grew and progressed. "We are essentially trying to build a story for how these tumors progress that fits the data," Brown explains.

Among the study's findings:

Serous ovarian tumors exist for at least four years before they spread.
The typical serous cancer is less than three millimeters across for 90 percent of this "window of opportunity for early detection."

These early tumors are twice as likely to be in the fallopian tubes as in the ovaries.

To cut mortality from this cancer in half, an annual early-detection test would need to detect tumors five millimeters in diameter or less – about the size of a black peppercorn and less than a thousandth the size at which these cancers are typically detected today.

Brown's lab is now looking for ways to take advantage of that window of opportunity to detect the microscopic tumors and intervene before the cancer spreads.

One strategy the laboratory is pursuing is to examine tissues near the ovaries, in the female reproductive tract, for protein or other molecular markers that could signify the presence of cancer. Brown says answering another question might also prove helpful: whether there is any reliable flow of material from the ovaries and fallopian tubes through the uterus and cervix into the vagina—material that might be tested for a specific cancer marker.

Despite science's broad understanding of cancer at a molecular level, it has been challenging to identify simple molecular markers that signal the presence of early disease. One current blood marker, CA-125, has proven useful in monitoring later-stage ovarian cancer, but it has not been helpful for early detection. So Brown's lab is also looking for biomarkers that are present only in ovarian tumors and not in healthy cells, instead of relying on tests that look for unusually high levels of a molecule that is part of normal biology (like CA-125).

The researchers are doing extensive sequencing of all messenger RNA molecules (which carry information for the production of specific proteins) in ovarian cancer cells, searching for evidence of proteins in these cells that would never be found in non-cancer cells. These variant molecules could be produced as a result of chromosome rearrangements—when the genome is cut and spliced in unusual ways—in ovarian cancers. "It's a long shot," says Brown, "but it's important enough to try."

Jennifer Michalowski | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>