Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tiny brain region better part of valor

Piece of hypothalamus is key to animals' fear of territorial rivals and predators, according to a study in the Proceedings of the National Academy of Sciences

Mice lose their fear of territorial rivals when a tiny piece of their brain is neutralized, a new study reports.

The study adds to evidence that primal fear responses do not depend on the amygdala – long a favored region of fear researchers – but on an obscure corner of the primeval brain.

A group of neuroscientists led by Larry Swanson of the University of Southern California studied the brain activity of rats and mice exposed to cats, or to rival rodents defending their territory.

Both experiences activated neurons in the dorsal premammillary nucleus, part of an ancient brain region called the hypothalamus.

Swanson's group then made tiny lesions in the same area. Those rodents behaved far differently.

"These animals are not afraid of a predator," Swanson said. "It's almost like they go up and shake hands with a predator."

Lost fear of cats in rodents with such lesions has been observed before. More important for studies of social interaction, the study replicated the finding for male rats that wandered into another male's territory.

Instead of adopting the usual passive pose, the intruder frequently stood upright and boxed with the resident male, avoided exposing his neck and back, and came back for more even when losing.

"It's amazing that these lesions appear to abolish innate fear responses," said Swanson, who added: "The same basic circuitry is found in primates and people that we find in rats and mice."

The study was slated for online publication the week of March 9 in Proceedings of the National Academy of Sciences.

Swanson predicted that his group's findings would shift some research away from the amygdala, a major target of fear studies for the past 30 years.

"This is a new perspective on what part of the brain controls fear," he said.

He explained that most amygdala studies have focused on a different type of fear, which might more accurately be called caution or risk aversion.

In those studies, animals receive an electric shock to their feet. When placed in the same environment a few days later, they display caution and increased activity of the amygdala.

But the emotion experienced in that case may differ from the response to a physical attack.

"We're not just dealing with one system that controls all fear," Swanson said.

Swanson and collaborators have been studying the role of the hypothalamus in the fear response since 1992.

Because of its role in basic survival functions such as feeding, reproduction and the sleep-wake cycle, the hypothalamus seems a plausible candidate for fear studies.

Yet, said Swanson, "nobody's paid any attention to it."

The PNAS study is the most recent of several by Swanson on fear and the hypothalamus. The few other researchers in the area include Newton Canteras of the University of Sao Paulo in Brazil, who collaborated with Swanson on the PNAS study, as well as Robert and Caroline Blanchard of the University of Hawaii.

Carl Marziali | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>