Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Timing of first steps no indicator of intelligence

28.03.2013
Child development varies and is hard to predict

On average, children take the first steps on their own at the age of 12 months. Many parents perceive this event as a decisive turning point. However, the timing is really of no consequence. Children who start walking early turn out later to be neither more intelligent nor more well-coordinated. This is the conclusion reached by a study supported by the Swiss National Science Foundation (SNSF).

Because parents pay great attention to their offspring, they often compare them with the other children in the sandpit or playground. Many of them worry that their child is lagging behind in terms of mental development if it sits up or starts to walk a bit later than other children. Now, however, in a statistical analysis of the developmental data of 222 children born healthy (*), researchers headed by Oskar Jenni of the Zurich Children's Hospital and Valentin Rousson of Lausanne University have come to the conclusion that most of these fears are groundless.

Considerable variance
Within the framework of the Zurich longitudinal study, the paediatricians conducted a detailed study of the development of 119 boys and 103 girls. The researchers examined the children seven times during the first two years of their life and subsequently carried out motor and intelligence tests with them every two to three years after they reached school age. The results show that children sit up for the first time at an age of between slightly less than four months and thirteen months (average 6.5 months). They begin to walk at an age of between 8.5 months and 20 months (average 12 months). In other words, there is considerable variance.
The researchers found no correlation between the age at which the children reached these motor milestones and their performance in the intelligence and motor tests between the age of seven and eighteen. In short, by the time they reach school age, children who start walking later than others are just as well-coordinated and intelligent as those who were up on their feet early.

More relaxed
Although the first steps that a child takes on its own represent a decisive turning point for most parents, the precise timing of this event is manifestly of no consequence. "That's why I advise parents to be more relaxed if their child only starts walking at 16 or 18 months," says Jenni. If a child still can't walk unaided after 20 months, then further medical investigations are indicated.

(*) Oskar G. Jenni, Aziz Chaouch, Jon Caflisch, Valentin Rousson (2013). Infant motor milestones: poor predictive value for outcome of healthy children. Acta Paediatrica online. doi:10.1111/apa.12129
(Manuscript available from the SNSF; e-mail: com@snf.ch)

Contact
PD Dr. med. Oskar Jenni
Abteilung Entwicklungspädiatrie
Kinderspital Zürich
Steinwiesstrasse 75
CH-8032 Zürich
Tel: +41 (0)44 266 77 51
E-mail: oskar.jenni@kispi.uzh.ch

Communication division | idw
Further information:
http://www.uzh.ch
http://www.snsf.ch

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>