Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Timing of first steps no indicator of intelligence

28.03.2013
Child development varies and is hard to predict

On average, children take the first steps on their own at the age of 12 months. Many parents perceive this event as a decisive turning point. However, the timing is really of no consequence. Children who start walking early turn out later to be neither more intelligent nor more well-coordinated. This is the conclusion reached by a study supported by the Swiss National Science Foundation (SNSF).

Because parents pay great attention to their offspring, they often compare them with the other children in the sandpit or playground. Many of them worry that their child is lagging behind in terms of mental development if it sits up or starts to walk a bit later than other children. Now, however, in a statistical analysis of the developmental data of 222 children born healthy (*), researchers headed by Oskar Jenni of the Zurich Children's Hospital and Valentin Rousson of Lausanne University have come to the conclusion that most of these fears are groundless.

Considerable variance
Within the framework of the Zurich longitudinal study, the paediatricians conducted a detailed study of the development of 119 boys and 103 girls. The researchers examined the children seven times during the first two years of their life and subsequently carried out motor and intelligence tests with them every two to three years after they reached school age. The results show that children sit up for the first time at an age of between slightly less than four months and thirteen months (average 6.5 months). They begin to walk at an age of between 8.5 months and 20 months (average 12 months). In other words, there is considerable variance.
The researchers found no correlation between the age at which the children reached these motor milestones and their performance in the intelligence and motor tests between the age of seven and eighteen. In short, by the time they reach school age, children who start walking later than others are just as well-coordinated and intelligent as those who were up on their feet early.

More relaxed
Although the first steps that a child takes on its own represent a decisive turning point for most parents, the precise timing of this event is manifestly of no consequence. "That's why I advise parents to be more relaxed if their child only starts walking at 16 or 18 months," says Jenni. If a child still can't walk unaided after 20 months, then further medical investigations are indicated.

(*) Oskar G. Jenni, Aziz Chaouch, Jon Caflisch, Valentin Rousson (2013). Infant motor milestones: poor predictive value for outcome of healthy children. Acta Paediatrica online. doi:10.1111/apa.12129
(Manuscript available from the SNSF; e-mail: com@snf.ch)

Contact
PD Dr. med. Oskar Jenni
Abteilung Entwicklungspädiatrie
Kinderspital Zürich
Steinwiesstrasse 75
CH-8032 Zürich
Tel: +41 (0)44 266 77 51
E-mail: oskar.jenni@kispi.uzh.ch

Communication division | idw
Further information:
http://www.uzh.ch
http://www.snsf.ch

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>