Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Time and Numbers Mix Together in the Brain

20.07.2011
Clocks tell time in numbers—and so do our minds, according to a new study which will be published in an upcoming issue of Psychological Science, a journal of the Association for Psychological Science. In two experiments, scientists found that people associate small numbers with short time intervals and large numbers with longer intervals—suggesting that these two systems are linked in the brain.

It’s clear that time and numbers are related in daily life, says Denise Wu of National Central University of Taiwan, who cowrote the new study with Acer Chang, Ovid Tzeng, and Daisy Hung. Numbers are used to represent distance and size, and to go to a farther place usually takes a longer time, for example.

But, she says, “Because the tradition of psychology is to manipulate one key variable of interest while controlling other confounding variables as much as possible, these domains were treated independently.” Recently, more researchers have started looking at how time and numbers are associated. Wu and her coauthors wanted to look more closely at this relationship, so they came up with a way to look at how numbers interfere with people’s perception of time.

In one experiment, each participant sat in front of a computer screen while a single-digit number appeared on the screen for a short time less than a second. After the number disappeared, the word “NOW” appeared on the screen, and the participant was supposed to hold down a key on the keyboard for as long as they thought the number had been displayed. The interaction between time and number was clear: after seeing a large number, like 9, people held the key down for longer than they did for a smaller number, like 2.

In another experiment, people saw a green dot for a short time. When they were asked to press the key, their key-press responses were accompanied by a number on the screen. In that case, they held down the key longer if they saw a small number and for a shorter time if they saw a large number. Wu thinks that happens because the small number makes people think they haven’t held down the key for long enough yet.

“We are really excited about this because this means the influence of the digit is so automatic and so immediate,” she says. The results suggest that the brain somehow processes time and the size of numbers together—possibly even with the same neurons. So, maybe instead of having different parts of the brain devoted to different kinds of measurement, there’s some part of the brain that is generally responsible for thinking about magnitude.

“It shows that it’s not like, mentally, we have a clock and it is immune to all the other information,” Wu says. Instead, your concept of time is responding to other things going on in the brain. In this case, it’s numbers, but it might also be influenced by emotion. For example, we all know that time passes more slowly in a boring meeting than when you’re chatting with a friend; maybe this is related to the ways that timekeeping links to other functions in the brain.

For more information about this study, please contact: Denise Wu at wuhsien@gmail.com.

The APS journal Psychological Science is the highest ranked empirical journal in psychology. For a copy of the article "Big time is not always long: Numerical magnitude automatically affects time reproduction" and access to other Psychological Science research findings, please contact Divya Menon at 202-293-9300 or dmenon@psychologicalscience.org.

Divya Menon | EurekAlert!
Further information:
http://www.psychologicalscience.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>