Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


When first-time mothers are induced, breaking the amniotic membrane shortens delivery time

In a study to be presented today at the Society for Maternal-Fetal Medicine's (SMFM) annual meeting, The Pregnancy Meeting ™, in San Francisco, researchers will present findings that show that by performing an amniotomy on first time mothers in situations when labor has to be induced, that delivery time can be shortened by more than 10 percent.

There are many reasons that labor may need to be induced after a woman's due date. Today's study looked at whether or not performing an amniotomy early on in the labor process would shorten delivery time and whether it would cause any adverse affects.

The researchers performed a randomized clinical trial. Nulliparous patients with singleton, viable pregnancies undergoing labor induction at or beyond 37 weeks were eligible for inclusion. They excluded subjects with PROM, cervical dilation > 4cm at admission, or significant vaginal bleeding.

Eligible subjects were randomized to early amniotomy (AROM at ¡Ü 4cm) or standard management (AROM at > 4cm). Outcomes for this study included duration of labor, % delivered within 24 hours, cesarean rate, maternal infectious complications, and measures of neonatal outcome. A priori sample size was based on the proportion of subjects delivered within 24 hours of randomization.

The study randomized 585 subjects into the clinical trial, 292 into early amniotomy group and 293 into the standard management group. Baseline demographics at randomization, cervical dilation at admission, and methods of induction were similar between the groups. Early amniotomy shortened the time from randomization to delivery by over 2 hours (p=0.04) and increased the proportion of subjects delivered within 24 hours of randomization.

The study found that by doing an early amniotomy, you can shorten the time to delivery by over 10 percent, and increase the likelihood of delivery within 24 hours without adversely impacting maternal or neonatal well-being.

"I think this offers the first bit of evidence that shows that by performing an amniotomy early in labor, you can shorten labor time by a significant amount with no ill effects to the mother or baby," said George Macones, M.D., one of the study's authors. "This greatly increases the comfort of the mother."

For interviews or a copy of the abstract please contact Vicki Bendure at, or 202-374-9259.

The Society for Maternal-Fetal Medicine (est. 1977) is a non-profit membership group for obstetricians/gynecologists who have additional formal education and training in maternal-fetal medicine. The society is devoted to reducing high-risk pregnancy complications by providing continuing education to its 2,000 members on the latest pregnancy assessment and treatment methods. It also serves as an advocate for improving public policy, and expanding research funding and opportunities for maternal-fetal medicine. The group hosts an annual scientific meeting in which new ideas and research in the area of maternal-fetal medicine are unveiled and discussed. For more information, visit

Vicki Bendure | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>