Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Threat from West Antarctica less than previously believed

18.05.2009
The potential contribution to sea level rise from a collapse of the West Antarctic Ice Sheet (WAIS) have been greatly overestimated, according to a new study published in the journal Science.

Scientists estimate global sea level would rise 3.3 metres, not five or six, as previously thought. The Atlantic and Pacific seaboards of the US, even in the case of a partial collapse, would experience the largest increases, threatening cities such as New York, Washington DC and San Francisco.

Long thought of as the sleeping giant with respect to sea level rise, Antarctica holds about nine times the volume of ice of Greenland. Its western ice sheet is of particular interest to scientists due to its unusual below-sea level topography, which is believed to make it inherently unstable. But the area's potential contribution to sea level has been greatly overestimated, according to new calculations.

Professor Jonathan Bamber at Bristol University, lead author of the study, said: "There's a vast body of research that's looked at the likelihood of a WAIS collapse and what implications such a catastrophic event would have for the globe. Yet all of these studies have assumed a five- to-six-metre contribution to sea level rise. Our calculation shows those estimates are much too large, even on a thousand year timescale."

Jonathan Bamber, Professor in Physical Geography, at the University's School of Geographical Sciences is currently a Visiting Fellow at the University of Colorado at Boulder's Cooperative Institute for Research in Environmental Sciences, or CIRES.

Instead of assuming a complete disintegration of the whole WAIS, Bamber and colleagues used models, based on glaciological theory, to simulate how the massive ice sheet would respond if the floating ice shelves fringing the continent broke free. Vast ice shelves currently block the WAIS from spilling into the Weddell and Ross Seas, limiting total ice loss to the ocean.

According to theory, if these floating ice shelves were removed, sizeable areas of the WAIS would become, in effect, undammed, triggering an acceleration of the ice sheet towards the ocean and a "rapid" inland migration of the grounding line, the point where the ice sheet's margins meets the ocean and begins to float.

The most unstable areas of the WAIS are those grounded below sea level on bedrock with negative bedslope, where the bedrock slopes downwards inland. Once undammed, these areas would quickly become buoyant, forming new floating ice shelves further inland and, in time, precipitating further break up and collapse.

For their calculations, the researchers assumed that only these areas would collapse and contribute to sea level rise. In contrast, they assumed areas grounded above sea level, or on bedrock that slopes upwards inland, would likely retain substantial ice masses.

Professor Bamber said: "Unlike the world's other major ice sheets – the East Antarctic Ice Sheet and Greenland – WAIS is the only one with such an unstable configuration."

Just how "rapid" a collapse of the WAIS would be is largely unknown. Though if such a large mass of ice steadily melted over 500 years, as suggested in an early study, it would add about 6.5 millimetres per year to sea level rise: twice the current rate due to all sources.

Professor Bamber added: "Interestingly, the pattern of sea level rise is independent of how fast or how much of the WAIS collapses. Even if the WAIS contributed only a metre of sea level rise over many years, sea levels along North America's shorelines would still increase 25 per cent more than the global average."

Regional variations in sea level would be largely driven by the redistribution of ice mass from the Antarctic continent to the oceans, according to the study. With less mass at the South Pole, Earth's gravity field would weaken in the Southern Hemisphere and strengthen in the North, causing water to pile up in the northern oceans.

This redistribution of mass would also affect Earth's rotation, which in turn would cause water to build up along the North American continent and in the Indian Ocean.

The study was conducted with support from the National Environmental Research Council (NERC) and in collaboration with Delft University of Technology in the Netherlands and the University of Durham.

Joanne Fryer | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>