Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Threat from West Antarctica less than previously believed

18.05.2009
The potential contribution to sea level rise from a collapse of the West Antarctic Ice Sheet (WAIS) have been greatly overestimated, according to a new study published in the journal Science.

Scientists estimate global sea level would rise 3.3 metres, not five or six, as previously thought. The Atlantic and Pacific seaboards of the US, even in the case of a partial collapse, would experience the largest increases, threatening cities such as New York, Washington DC and San Francisco.

Long thought of as the sleeping giant with respect to sea level rise, Antarctica holds about nine times the volume of ice of Greenland. Its western ice sheet is of particular interest to scientists due to its unusual below-sea level topography, which is believed to make it inherently unstable. But the area's potential contribution to sea level has been greatly overestimated, according to new calculations.

Professor Jonathan Bamber at Bristol University, lead author of the study, said: "There's a vast body of research that's looked at the likelihood of a WAIS collapse and what implications such a catastrophic event would have for the globe. Yet all of these studies have assumed a five- to-six-metre contribution to sea level rise. Our calculation shows those estimates are much too large, even on a thousand year timescale."

Jonathan Bamber, Professor in Physical Geography, at the University's School of Geographical Sciences is currently a Visiting Fellow at the University of Colorado at Boulder's Cooperative Institute for Research in Environmental Sciences, or CIRES.

Instead of assuming a complete disintegration of the whole WAIS, Bamber and colleagues used models, based on glaciological theory, to simulate how the massive ice sheet would respond if the floating ice shelves fringing the continent broke free. Vast ice shelves currently block the WAIS from spilling into the Weddell and Ross Seas, limiting total ice loss to the ocean.

According to theory, if these floating ice shelves were removed, sizeable areas of the WAIS would become, in effect, undammed, triggering an acceleration of the ice sheet towards the ocean and a "rapid" inland migration of the grounding line, the point where the ice sheet's margins meets the ocean and begins to float.

The most unstable areas of the WAIS are those grounded below sea level on bedrock with negative bedslope, where the bedrock slopes downwards inland. Once undammed, these areas would quickly become buoyant, forming new floating ice shelves further inland and, in time, precipitating further break up and collapse.

For their calculations, the researchers assumed that only these areas would collapse and contribute to sea level rise. In contrast, they assumed areas grounded above sea level, or on bedrock that slopes upwards inland, would likely retain substantial ice masses.

Professor Bamber said: "Unlike the world's other major ice sheets – the East Antarctic Ice Sheet and Greenland – WAIS is the only one with such an unstable configuration."

Just how "rapid" a collapse of the WAIS would be is largely unknown. Though if such a large mass of ice steadily melted over 500 years, as suggested in an early study, it would add about 6.5 millimetres per year to sea level rise: twice the current rate due to all sources.

Professor Bamber added: "Interestingly, the pattern of sea level rise is independent of how fast or how much of the WAIS collapses. Even if the WAIS contributed only a metre of sea level rise over many years, sea levels along North America's shorelines would still increase 25 per cent more than the global average."

Regional variations in sea level would be largely driven by the redistribution of ice mass from the Antarctic continent to the oceans, according to the study. With less mass at the South Pole, Earth's gravity field would weaken in the Southern Hemisphere and strengthen in the North, causing water to pile up in the northern oceans.

This redistribution of mass would also affect Earth's rotation, which in turn would cause water to build up along the North American continent and in the Indian Ocean.

The study was conducted with support from the National Environmental Research Council (NERC) and in collaboration with Delft University of Technology in the Netherlands and the University of Durham.

Joanne Fryer | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>