Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can thinking that you are fat make you fat?

09.08.2012
They're everywhere -- in magazines, on the Internet, on television—people with super-thin bodies who are presented as having the ideal body form. But despite the increasing pressure to be thin, more and more of us are overweight.
Now, researchers from the Norwegian University of Science and Technology (NTNU) have found that normal weight teens who perceive themselves as fat are more likely to grow up to be fat.

"Perceiving themselves as fat even though they are not may actually cause normal weight children to become overweight as adults," says Koenraad Cuypers, a researcher at the Norwegian University of Science and Technology.

Cuypers and his colleagues at the Department of Public Health and General Practice in NTNU's Faculty of Medicine have looked at data from the Nord-Trøndelag Health Study (HUNT) to examine the obesity problem from a new angle: Theirs is the first study to look at the relationship between perceived weights and actual weights in a longitudinal study of teenagers and young adults.

A perpetual struggle for the ideal body
There are likely many different, and complex, reasons that explain why thinking you are fat as a teen– even if you are not – may lead you to become fat when you are grown.

One explanation may be related to psychosocial stress, which can be associated with gaining weight around the waist. Under this scenario, the psychosocial stress related to having (or not having) an ideal body type, along with the perception of oneself as overweight, can result in weight gain.

"Another explanation may be that young people who see themselves as fat often change their eating habits by skipping meals, for example. Research has shown that dropping breakfast can lead to obesity," Cuypers says.

Additionally, following a diet that you cannot maintain over time will also be counterproductive, since the body strives to maintain the weight you had before you started the diet.

The researchers checked whether physical activity made a difference in the relationship between perceived and actual obesity. But they found that exercise could not compensate for the negative effect of feeling overweight at a young age.

Higher BMI, larger waist circumference
The health survey Young-HUNT1 was conducted from 1995-1997 and included 1196 normal weight teenagers of both sexes. Participants were later followed up in the Young-HUNT3 study, from 2006-2008, when they had grown to be between 24 and 30 years of age.

Half of the participants still had normal weights as adults. But among those who were overweight, the researchers found a clear difference:

The data showed that 59 per cent of the girls who had felt fat as a teen became overweight in adulthood, as measured using body mass index, or BMI. If waist circumference was used as the measure of obesity, then the percentage of teens who initially perceived themselves as fat and later became overweight as adults was 78 per cent.

In contrast, 31 per cent of the girls who did not consider themselves fat during adolescence were found in the follow-up study to be overweight as measured using BMI. That number was 55 per cent as measured by waist circumference.

Normal weight teens who rated themselves as fat in the initial HUNT study had a BMI in the follow-up HUNT study that was on average 0.88 higher than those who did not. They were also on average 3.46 cm larger as measured around the waist.

Similar studies have previously been conducted in normal weight adult men and women. These studies have also shown an increase in weight over time in those who perceived themselves as too fat.

Simple measures for normal weight
The study also shows that normal weight girls were more likely than boys to rate themselves as overweight: 22 per cent of girls and nine per cent of the boys saw themselves as fat in the first HUNT survey.

One explanation for this gender difference may be that the media's focus on looks increasingly targets girls rather than boys.

"Girls thus experience more psychosocial stress to achieve the ideal body," Cuypers says. "Society needs to move away from a focus on weight, and instead needs to emphasize healthy eating habits, such as eating regular and varied meals and eating breakfast. Good sleep habits are also an advantage. And by reducing the amount that teens are transported to and from school and recreational activities, teens might also be able to avoid getting a ‘commuter belly'," Cuypers adds.

These kinds of measures can improve overall health, and can also be a help for teens who are in fact overweight, but who believe their weight is normal.

Role models, not super models
Cuypers believes that the relationship between a perception of being overweight and the development of overweight is something the school system and society as a whole must address in order to reverse the trend and reduce societal problems associated with obesity.

"The weight norms for society must be changed so that young people have a more realistic view of what is normal. In school you should talk to kids about what are normal body shapes, and show that all bodies are beautiful as they are. And, last but not least: The media must cease to emphasize the super model body as the perfect ideal, because it is not." Cuypers says.

Cuypers' results have been published in the Journal of Obesity: http://www.hindawi.com/journals/jobes/2012/601872/

Koenraad Cuypers | EurekAlert!
Further information:
http://www.ntnu.no

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>