Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thieving Whale Caught on Video Gives Rare Clues about Hunting Strategy, Sound Production

25.05.2009
Marine mammal videotaped stealing fish provides information about animal’s physical features

For decades scientists have been intrigued by the variety of sounds emitted by sperm whales, partly due to a popular theory that suggests that the sounds might contain information about the animals’ size.

But historically it has been extremely difficult to demonstrate that these curious clicking noises can reveal information about the physical characteristics of the massive marine mammals. Now, researchers at Scripps Institution of Oceanography at UC San Diego are unlocking some of the mysteries of sperm whale sound production.

In a paper published in the May issue of the Journal of the Acoustical Society of America, Delphine Mathias and Aaron Thode of Scripps Oceanography for the first time describe a direct comparison between sperm whale clicking sounds and the physical features of the animal’s head, including its size and internal organ structure.

The study provides a glimpse into a possible new approach for investigating the biology behind marine mammal sounds and perhaps more accurately counting their populations.

The roots of the unique study began years ago in Alaska, after sperm whales developed the ability to steal black cod off “longlines,” deep-sea fishing gear that features a main fishing line draped across the ocean and fastened with shorter lines bearing baited hooks. Frustrated black cod fishermen began to realize that their longline fishing boats were attracting groups of whales—which typically forage alone— to their longlines, somehow alerting the animals like a dinner bell.

To help fishermen and scientists better understand this behavior, Scripps researchers deployed acoustic recorders on longlines in 2004 off Sitka, Alaska, as part of the Southeast Alaska Sperm Whale Avoidance Project (SEASWAP). The results helped identify the sounds that attract whales to the fishing vessels. Encouraged, the researchers added video cameras to the fishing gear in 2006, which led to some unexpected results.

The resulting video, recorded using ambient light at 100 meters (328 feet) depth, not only successfully gave the fishermen a clear idea of how the thieving whales were stealing the fish—they pluck the line at one end to jar the black cod free at the other end, somewhat like shaking apples from a tree—but it gave scientists a chance to match the animal’s acoustics with video depictions of its physical features. Sperm whales typically dive to dark depths spanning 300 to 2,000 meters (984 to 6,500 feet) to catch prey, making it virtually impossible to capture such activity on video. The fact that the animals produce foraging sounds at such shallow depths around fishing vessels is the main reason the Alaska footage is so unique.

The clicks emitted by the whales are produced more rapidly as they approach their targets of interest and are among the loudest and most intense sounds produced by any animal, according to Thode, an associate research scientist with Scripps Oceanography’s Marine Physical Laboratory.

“The sounds can be louder than a firecracker,” said Thode. “But until this video recording was made, scientists had not been able to get a direct measurement of the size of the animal and the foraging sounds at the same time.”

The Alaska video allowed Mathias and Thode to not only match the size of the whale’s head with its acoustic signal, but permitted them to infer the size of its spermaceti organ, which produces a white, waxy substance previously used in candles and ointments, as well as the so-called “junk” inside the whale’s head. The junk is a large organ that is believed to play a role in transmitting sound from the whale’s head.

Thode said the study could be a first step in the broader use of acoustics to census whale populations as supplements to visual counts of the animals. Currently it is difficult to relate the number of whale sounds recorded to the number of animals present. The ability to tease individuals apart acoustically would be a basic step toward solving the problem.

“It’s interesting to see if you can identify an individual animal from its sounds and that’s something people have been fascinated by for a long time,” said Thode. “Humans can recognize individual people over the telephone using features of their sounds, but it’s been quantitatively very difficult to do this for individual animals.”

Thode said the video also may assist fishermen in reducing sperm whale encounters with their gear. Besides being economically damaging, the encounters are potentially dangerous to both humans and marine mammals due to the possibility of entanglement. Thode said the video recording has encouraged the U.S. National Marine Fisheries Service to start deploying acoustic recorders during black cod surveys off the Alaskan Coast to measure the scale of the sperm whale problem.

The research was supported by the National Geographic Society and North Pacific Research Board.

Note to broadcast and cable producers: UC San Diego provides an on-campus satellite uplink facility for live or pre-recorded television interviews. Please phone or e-mail the media contact listed above to arrange an interview.

Scripps Institution of Oceanography: scripps.ucsd.edu

Scripps News: scrippsnews.ucsd.edu

Scripps Institution of Oceanography, at UC San Diego, is one of the oldest, largest and most important centers for global science research and education in the world. The National Research Council has ranked Scripps first in faculty quality among oceanography programs nationwide. Now in its second century of discovery, the scientific scope of the institution has grown to include biological, physical, chemical, geological, geophysical and atmospheric studies of the earth as a system. Hundreds of research programs covering a wide range of scientific areas are under way today in 65 countries. The institution has a staff of about 1,300, and annual expenditures of approximately $155 million from federal, state and private sources. Scripps operates one of the largest U.S. academic fleets with four oceanographic research ships and one research platform for worldwide exploration.

Mario Aguilera | Newswise Science News
Further information:
http://www.ucsd.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>