Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thieving Whale Caught on Video Gives Rare Clues about Hunting Strategy, Sound Production

25.05.2009
Marine mammal videotaped stealing fish provides information about animal’s physical features

For decades scientists have been intrigued by the variety of sounds emitted by sperm whales, partly due to a popular theory that suggests that the sounds might contain information about the animals’ size.

But historically it has been extremely difficult to demonstrate that these curious clicking noises can reveal information about the physical characteristics of the massive marine mammals. Now, researchers at Scripps Institution of Oceanography at UC San Diego are unlocking some of the mysteries of sperm whale sound production.

In a paper published in the May issue of the Journal of the Acoustical Society of America, Delphine Mathias and Aaron Thode of Scripps Oceanography for the first time describe a direct comparison between sperm whale clicking sounds and the physical features of the animal’s head, including its size and internal organ structure.

The study provides a glimpse into a possible new approach for investigating the biology behind marine mammal sounds and perhaps more accurately counting their populations.

The roots of the unique study began years ago in Alaska, after sperm whales developed the ability to steal black cod off “longlines,” deep-sea fishing gear that features a main fishing line draped across the ocean and fastened with shorter lines bearing baited hooks. Frustrated black cod fishermen began to realize that their longline fishing boats were attracting groups of whales—which typically forage alone— to their longlines, somehow alerting the animals like a dinner bell.

To help fishermen and scientists better understand this behavior, Scripps researchers deployed acoustic recorders on longlines in 2004 off Sitka, Alaska, as part of the Southeast Alaska Sperm Whale Avoidance Project (SEASWAP). The results helped identify the sounds that attract whales to the fishing vessels. Encouraged, the researchers added video cameras to the fishing gear in 2006, which led to some unexpected results.

The resulting video, recorded using ambient light at 100 meters (328 feet) depth, not only successfully gave the fishermen a clear idea of how the thieving whales were stealing the fish—they pluck the line at one end to jar the black cod free at the other end, somewhat like shaking apples from a tree—but it gave scientists a chance to match the animal’s acoustics with video depictions of its physical features. Sperm whales typically dive to dark depths spanning 300 to 2,000 meters (984 to 6,500 feet) to catch prey, making it virtually impossible to capture such activity on video. The fact that the animals produce foraging sounds at such shallow depths around fishing vessels is the main reason the Alaska footage is so unique.

The clicks emitted by the whales are produced more rapidly as they approach their targets of interest and are among the loudest and most intense sounds produced by any animal, according to Thode, an associate research scientist with Scripps Oceanography’s Marine Physical Laboratory.

“The sounds can be louder than a firecracker,” said Thode. “But until this video recording was made, scientists had not been able to get a direct measurement of the size of the animal and the foraging sounds at the same time.”

The Alaska video allowed Mathias and Thode to not only match the size of the whale’s head with its acoustic signal, but permitted them to infer the size of its spermaceti organ, which produces a white, waxy substance previously used in candles and ointments, as well as the so-called “junk” inside the whale’s head. The junk is a large organ that is believed to play a role in transmitting sound from the whale’s head.

Thode said the study could be a first step in the broader use of acoustics to census whale populations as supplements to visual counts of the animals. Currently it is difficult to relate the number of whale sounds recorded to the number of animals present. The ability to tease individuals apart acoustically would be a basic step toward solving the problem.

“It’s interesting to see if you can identify an individual animal from its sounds and that’s something people have been fascinated by for a long time,” said Thode. “Humans can recognize individual people over the telephone using features of their sounds, but it’s been quantitatively very difficult to do this for individual animals.”

Thode said the video also may assist fishermen in reducing sperm whale encounters with their gear. Besides being economically damaging, the encounters are potentially dangerous to both humans and marine mammals due to the possibility of entanglement. Thode said the video recording has encouraged the U.S. National Marine Fisheries Service to start deploying acoustic recorders during black cod surveys off the Alaskan Coast to measure the scale of the sperm whale problem.

The research was supported by the National Geographic Society and North Pacific Research Board.

Note to broadcast and cable producers: UC San Diego provides an on-campus satellite uplink facility for live or pre-recorded television interviews. Please phone or e-mail the media contact listed above to arrange an interview.

Scripps Institution of Oceanography: scripps.ucsd.edu

Scripps News: scrippsnews.ucsd.edu

Scripps Institution of Oceanography, at UC San Diego, is one of the oldest, largest and most important centers for global science research and education in the world. The National Research Council has ranked Scripps first in faculty quality among oceanography programs nationwide. Now in its second century of discovery, the scientific scope of the institution has grown to include biological, physical, chemical, geological, geophysical and atmospheric studies of the earth as a system. Hundreds of research programs covering a wide range of scientific areas are under way today in 65 countries. The institution has a staff of about 1,300, and annual expenditures of approximately $155 million from federal, state and private sources. Scripps operates one of the largest U.S. academic fleets with four oceanographic research ships and one research platform for worldwide exploration.

Mario Aguilera | Newswise Science News
Further information:
http://www.ucsd.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>