Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thesis verifies value of pyrolisis as technique for recycling pneumatic tires

10.11.2010
The research has been carried out at the University of the Basque Country

The manufacture of pneumatic tyres requires a large cost in energy and raw materials.

Moreover, it is a great environmental problem once their life cycle is over, given that they are designed to resist all kinds of adverse conditions and are, thus, very complicated to eliminate.

The chemist, Ms María Felisa Laresgoiti, chose to study the process of pyrolisis, both in order to recover part of the energy and material costs of the manufacture of pneumatic tyres as well as to solve the problem of their elimination.

Pyrolisis is heating in the absence of oxygen, which results in the decomposition of the pneumatic tyres and the reuse of the resulting components. With the results, Ms Laresgoiti presented her PhD thesis at the University of the Basque Country (UPV/EHU), entitled, Chemical recycling of pneumatic tyres through pyrolisis.

Ms Laresgoiti used a 3.5 litre fixed bed reactor (one or more vertical tubes packed with particles which accelerate the process of reaction) and guaranteed the absence of oxygen —necessary for pyrolisis— by means of a nitrogen sweep. After a number of trials, she concluded that, at above 500 degrees and with 30 minutes of reaction time, the decomposition of the organic material of the tyres is complete. This decomposition generates 40 % of liquids and 16 % of gases, useable as fuels and/or sources of raw material. The remaining 44 % left after the process is solid inorganic material — loads, metals and soot, practically unaltered by the process and which can be reused for various applications.

Organic material

The liquids arising from the pyrolisis are a complex mixture of organic products that can carry out the same function of certain fractions derived from petroleum, and so are reusable as an alternative to fossil fuels. For example, they can substitute fuel oil in certain cases, although the high calorific power of the liquid obtained and their high content of nitrogen and sulphur prohibit their general commercial use. These liquids also can be used in part as commercial petrol, commercial diesel for motor vehicles and commercial central heating oil. Nevertheless, even then they do not comply with the required legal specifications, and so would have to be treated or mixed with other sources.

Also, besides their use as fuel, these liquids are useful as a source of various valuable chemical compounds, such as styrene (they are used, for example in the synthesis of plastic materials) or limonene (used as a biodegradable solvent, amongst other things).

Apart from the liquids, gases also form part of the organic material obtained from the pyrolisis of pneumatic tyres. These are fundamentally made up of hydrocarbons, and their high calorific power makes them an important energy source. This source is not only sufficient for self-feeding the process, but there is a surplus which can be taken advantage of energetically.

Inorganic material

The remaining 44 % of the product resulting from the pyrolisis of pneumatic tyres is inorganic. This is solid material and remains practically unaltered with respect to the dimensions and shape of the items before the process. This material is easily broken up into soot and steel filaments or strings from the tyre, and which can be reused or recycled independently.

According to the thesis, it is precisely the soot from the pyrolisis that could be used for a number of commercial applications. For example, Ms Laresgoiti believes that its possible application as a reinforcement in the manufacture of new pneumatic tyres should be considered. She also believes that soot could be of commercial use as semi-reinforcement material or non-reinforcement filler, as active carbon or pigment for inks.

About the author

Ms María Felisa Laresgoiti Pérez (Llodio, Bizkaia 1964) is a graduate in Chemical Sciences. She drew up her PhD thesis under the direction of Ms Isabel de Marco Rodríguez and Mr Juan Andrés Legarreta Fernández, both professors at the Department of Chemical Engineering and the Environment at the Higher Technical School of Engineering in Bilbao (UPV/EHU). It was in this department that the researcher carried out her work. Currently, Ms Laresgoiti is a specialist laboratory technician at the UPV/EHU.

Amaia Portugal | EurekAlert!
Further information:
http://www.elhuyar.com

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>