Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thesis verifies value of pyrolisis as technique for recycling pneumatic tires

10.11.2010
The research has been carried out at the University of the Basque Country

The manufacture of pneumatic tyres requires a large cost in energy and raw materials.

Moreover, it is a great environmental problem once their life cycle is over, given that they are designed to resist all kinds of adverse conditions and are, thus, very complicated to eliminate.

The chemist, Ms María Felisa Laresgoiti, chose to study the process of pyrolisis, both in order to recover part of the energy and material costs of the manufacture of pneumatic tyres as well as to solve the problem of their elimination.

Pyrolisis is heating in the absence of oxygen, which results in the decomposition of the pneumatic tyres and the reuse of the resulting components. With the results, Ms Laresgoiti presented her PhD thesis at the University of the Basque Country (UPV/EHU), entitled, Chemical recycling of pneumatic tyres through pyrolisis.

Ms Laresgoiti used a 3.5 litre fixed bed reactor (one or more vertical tubes packed with particles which accelerate the process of reaction) and guaranteed the absence of oxygen —necessary for pyrolisis— by means of a nitrogen sweep. After a number of trials, she concluded that, at above 500 degrees and with 30 minutes of reaction time, the decomposition of the organic material of the tyres is complete. This decomposition generates 40 % of liquids and 16 % of gases, useable as fuels and/or sources of raw material. The remaining 44 % left after the process is solid inorganic material — loads, metals and soot, practically unaltered by the process and which can be reused for various applications.

Organic material

The liquids arising from the pyrolisis are a complex mixture of organic products that can carry out the same function of certain fractions derived from petroleum, and so are reusable as an alternative to fossil fuels. For example, they can substitute fuel oil in certain cases, although the high calorific power of the liquid obtained and their high content of nitrogen and sulphur prohibit their general commercial use. These liquids also can be used in part as commercial petrol, commercial diesel for motor vehicles and commercial central heating oil. Nevertheless, even then they do not comply with the required legal specifications, and so would have to be treated or mixed with other sources.

Also, besides their use as fuel, these liquids are useful as a source of various valuable chemical compounds, such as styrene (they are used, for example in the synthesis of plastic materials) or limonene (used as a biodegradable solvent, amongst other things).

Apart from the liquids, gases also form part of the organic material obtained from the pyrolisis of pneumatic tyres. These are fundamentally made up of hydrocarbons, and their high calorific power makes them an important energy source. This source is not only sufficient for self-feeding the process, but there is a surplus which can be taken advantage of energetically.

Inorganic material

The remaining 44 % of the product resulting from the pyrolisis of pneumatic tyres is inorganic. This is solid material and remains practically unaltered with respect to the dimensions and shape of the items before the process. This material is easily broken up into soot and steel filaments or strings from the tyre, and which can be reused or recycled independently.

According to the thesis, it is precisely the soot from the pyrolisis that could be used for a number of commercial applications. For example, Ms Laresgoiti believes that its possible application as a reinforcement in the manufacture of new pneumatic tyres should be considered. She also believes that soot could be of commercial use as semi-reinforcement material or non-reinforcement filler, as active carbon or pigment for inks.

About the author

Ms María Felisa Laresgoiti Pérez (Llodio, Bizkaia 1964) is a graduate in Chemical Sciences. She drew up her PhD thesis under the direction of Ms Isabel de Marco Rodríguez and Mr Juan Andrés Legarreta Fernández, both professors at the Department of Chemical Engineering and the Environment at the Higher Technical School of Engineering in Bilbao (UPV/EHU). It was in this department that the researcher carried out her work. Currently, Ms Laresgoiti is a specialist laboratory technician at the UPV/EHU.

Amaia Portugal | EurekAlert!
Further information:
http://www.elhuyar.com

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Devils Hole: Ancient Traces of Climate History

24.05.2017 | Earth Sciences

Discovery of a Key Regulatory Gene in Cardiac Valve Formation

24.05.2017 | Life Sciences

A CLOUD of possibilities: Finding new therapies by combining drugs

24.05.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>