Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The backwards brain? Study shows how brain maps develop to help us perceive the world


Driving to work becomes routine--but could you drive the entire way in reverse gear? Humans, like many animals, are accustomed to seeing objects pass behind us as we go forward. Moving backwards feels unnatural.

In a new study, scientists from The Scripps Research Institute (TSRI) reveal that moving forward actually trains the brain to perceive the world normally.

Hollis Cline, PhD, is the Hahn Professor of Neuroscience and a member of the Dorris Neuroscience Center at The Scripps Research Institute.

Credit: Photo courtesy of The Scripps Research Institute

The findings also show that the relationship between neurons in the eye and the brain is more complicated than previously thought--in fact, the order in which we see things could help the brain calibrate how we perceive time, as well as the objects around us.

"We were trying to understand how that happens and the rules used during brain development," said the study's senior author Hollis Cline, who is the Hahn Professor of Neuroscience and member of the Dorris Neuroscience Center at TSRI.

This research, published this week in the journal Proceedings of the National Academy of Sciences could have implications for treating sensory processing disorders such as autism.

Reversing the Map

The new study began when Masaki Hiramoto, a staff scientist in Cline's lab, asked an important question: "How does the visual system of the brain get better "tuned" over time?"

Previous studies had shown that people use the visual system to create an internal map of the world. The key to creating this map is sensing the "optic flow" of objects as we walk or drive forward. "It's natural because we've learned it," said Cline.

To study how this system develops, Hiramoto and Cline used transparent tadpoles to watch as nerve fibers, called axons, developed between the retina and the brain. The scientists marked the positions of the axons using fluorescent proteins.

The tadpoles were split into groups and raised in small chambers. One group was shown a computer screen with bars of light that moved past the tadpoles from front to back--simulating a normal optic flow as if the animal were moving forward. A second group saw the bars in reverse--simulating an unnatural backwards motion. Using the TSRI Dorris Neuroscience Center microscopy facility, Hiramoto then captured high-resolution images of these neurons as they grew over time.

The researchers found that tadpoles' visual map developed normally when shown bars moving from front to back. But tadpoles shown the bars in reverse order extended axons to the wrong spots in their map. With those axons out of order, the brain would perceive visual images as reversed or squished.

Rewriting the Rules

This discovery challenges a rule in neuroscience that dates back to 1949. Until now, researchers knew it was important that neighboring neurons fired at roughly the same time, but didn't realize that the temporal sequence of firing was important.

"According to the old rule, if there was a stimulus that went backwards, the map would be fine," said Cline.

The new study adds the element of order. The researchers showed that objects moving from front to back in the visual field activated retinal cells in a specific sequence.

Cline and Hiramoto believe that this sequence helps the brain perceive the passage of time. For example, if you drive for a few minutes and pass a street sign, your brain will map its position behind you. If you keep driving and you pass another street sign, your brain will map out not only the street signs' positions relative to each other, but their distance in time as well.

This link between time and space in the visual system might also apply to hearing and the sense of touch. The original question of how the visual system gets "tuned" over time might be applicable across the entire brain.

The researchers believe this study could have implications for patients with sensory and temporal processing disorders, including autism and a mysterious disorder called Alice in Wonderland syndrome, where a person perceives objects as disproportionately big or small. Cline said the new study offers possibilities for retraining the brain to map the world correctly, for instance after stroke.

More information on the study, "Optic flow instructs retinotopic map formation through a spatial to temporal to spatial transformation of visual information," is available at:

Support for the work came from the National Institutes of Health (EY011261 and DP1OD000458), the Nancy Lurie Marks Family Foundation and an endowment from the Hahn Family Foundation.

Madeline McCurry-Schmidt | EurekAlert!
Further information:

Further reports about: Neuroscience Scripps TSRI axons disorders neurons sensory sequence spatial tadpoles temporal visual system

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>