Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TGen presents triple-negative breast cancer study supported by Life Technologies

02.04.2012
Dr. John Carpten co-chairs panel discussion at AACR Annual Meeting 2012

Because cases of Triple-Negative Breast Cancer (TNBC) are so genetically different, whole-genome sequencing is needed to detect the subtle molecular differences that might point to specific treatments for individual patients.

Dr. John Carpten, Ph.D., head of the Integrated Cancer Genomics Division at the Translational Genomics Research Institute (TGen), will deliver that message along with other preliminary findings about whole-genome sequencing of TNBC at the American Association for Cancer Research (AACR) Annual Meeting 2012, March 31-April 4, in Chicago.

"Every TNBC tumor we interrogate is genomically unique," said Dr. Carpten, who is part of an unprecedented and ongoing clinical trial involving the whole-genome sequencing of 14 TNBC tumors. Whole-Genome Sequencing, spells out all of the nearly 3 billion DNA molecules found in human cells, allowing unprecedented scrutiny of patients' genetic codes.

Dr. Carpten will co-chair an AACR panel, Concepts and Challenges in Bringing Next-Generation Sequencing to the Clinic. Dr. Stephen B. Gruber, M.D., Ph.D., M.P.H., and the H. Marvin Pollard Professor of Internal Medicine at the University of Michigan will co-chair. Other panelists include Giselle L. Sholler of the Van Andel Research Institute and Victor E. Velculescu of the Johns Hopkins Kimmel Comprehensive Cancer Center. The panel is set for 10:30 a.m. EDT April 2 at Chicago's McCormick Place convention center.

TNBC is unlike the nearly 80-90 percent of other breast cancers, which are driven by the hormones estrogen (1), progesterone (2), or too many receptors of the HER2 gene (3). Testing negative for all three means the cancer is "triple-negative."

Estrogen- and progesterone-driven breast cancers can be treated with hormonal therapy, while the drug Herceptin (trastuzumab) targets HER2 receptors.

But there have been no sure-shot treatments developed for TNBC, mainly because these cancers display a startling lack of uniformity, or heterogeneity, in their molecular make up.

"Whole-genome sequencing is enabling us to zero in on the specific challenges presented with each individual TNBC tumor, advancing a 'personalized medicine' approach that helps guide the treatment of each patient," said Dr. Carpten.

Based on mutations uncovered by sequencing, physicians recommend that their patients enter treatment protocols for either existing drugs or for new agents being evaluated in pharma-sponsored clinical trials.

Investigators are sequencing germline and tumor DNA to identify genomic alterations including point mutations, insertions/deletions and structural events such as translocations. RNA sequencing also is performed on the tumors, along with tissue from age- and ethnicity-matched normal breast controls, to obtain insights on gene expression differences.

This clinical study is being conducted in collaboration with US Oncology Research, with support from Life Technologies Corporation.

"This is among the largest studies of a single tumor type in which whole genome sequencing is being used to identify potential options for targeted treatment," said Ronnie Andrews, president of medical sciences at Life Technologies Corporation. "We are very pleased to help support this study, which is providing key insights into how sequencing can best be used in the clinic."

The theme of the 2012 AACR meeting is "Accelerating Science: Concept to Clinic," reflecting the strides and breakthroughs being made by cancer researchers and the impact they are making on global health. The conference will emphasize the synergy between basic, clinical and translational research that lead to effective cancer therapies and prevention strategies.

About Life Technologies (www.lifetechnologies.com)

Life Technologies Corporation (NASDAQ: LIFE) is a global biotechnology tools company dedicated to improving the human condition. Our systems, consumables and services enable researchers to accelerate scientific exploration, driving to discoveries and developments that make life even better. Life Technologies customers do their work across the biological spectrum, working to advance personalized medicine, regenerative science, molecular diagnostics, agricultural and environmental research, and 21st century forensics. Life Technologies had sales of $3.3 billion in 2009, employs approximately 9,000 people, has a presence in approximately 160 countries, and possesses a rapidly growing intellectual property estate of approximately 3,900 patents and exclusive licenses. Life Technologies was created by the combination of Invitrogen Corporation and Applied Biosystems Inc., and manufactures both in-vitro diagnostic products and research use only-labeled products. For more information on how we are making a difference, please visit our website: http://www.lifetechnologies.com. *

About TGen

The Translational Genomics Research Institute (TGen) is a Phoenix, Arizona-based non-profit organization dedicated to conducting groundbreaking research with life changing results. Research at TGen is focused on helping patients with diseases such as cancer, neurological disorders and diabetes. TGen is on the cutting edge of translational research where investigators are able to unravel the genetic components of common and complex diseases. Working with collaborators in the scientific and medical communities, TGen believes it can make a substantial contribution to the efficiency and effectiveness of the translational process. For more information, visit: www.tgen.org.

Press Contact:
Steve Yozwiak
602-343-8704
syozwiak@tgen.org

Steve Yozwiak | EurekAlert!
Further information:
http://www.tgen.org

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>