Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Texas A&M research produces tools to study stallions' subfertility

27.08.2010
Subfertility of breeding stallions — meaning the horses are less able to sire foals — is a well-recognized problem that has caused multi-million-dollar losses in the equine industry, experts say. Texas A&M researchers believe they are making progress in solving the problem by using an approach that might provide tools and resources necessary to study subfertility without causing stallions the angst of providing testicular samples for testing.

They have developed protocols to isolate RNA—which carries the information of genes in DNA — from stallion sperm and testis biopsies so that genetic factors associated with this condition can be identified.

Researchers from the Departments of Veterinary Integrative Biosciences (VIBS) and Large Animal Clinical Sciences had their results published online in the journal Theriogenology. The leading author of the published research is Dr. Terje Raudsepp, an assistant professor from VIBS, and the first author is Dr. Pranab J. Das, a postdoctoral research assistant from the same department.

The RNA isolation technique from stallion sperm is believed to lead to the discovery of fertility biomarkers that could improve breeding procedures and raise thoroughbred race horses.

"Because of the structure of horse breeding, where one stallion covers many mares, the economy of the breeding industry is more sensitive to the fertility of the stallion than the mare," Das says.

"During past decades, several organized studies have been conducted to understand the role of various environmental, behavioral and physiological factors affecting fertility in horses," adds Raudsepp, the project leader. "However, very little is known about the genetic factors associated with stallion fertility, and genetic factors of male fertility involve the interplay of hundreds of genes."

Obtaining testis tissue by surgery could harm the horse, so the research team studied an alternative — RNA isolation from sperm — which is non-invasive.

But RNA isolation from sperm has several challenges, the researchers say. "RNA quantity in a sperm cell is low, and sperm are highly condensed cells," they explain.

The Texas A&M team overcame these challenges and developed protocols that are specific to the species and to the various sources of sperm, including fresh ejaculates, flash frozen, cooled ejaculates and others.

"The team has started to identify the genes whose messengers are present in stallion sperm and to associate these genes with known fertility issues and sperm functions," the researchers say. "This knowledge is necessary for the next stage of research, which aims to identify differences in gene profiles between normal and subfertile or infertile stallions.

"Now, breeding stallions are selected mainly on the basis of their pedigree, looks and performance," the researchers add. "But in the future, we may be able to select them based on their reproductive potential. The published paper on RNA isolation from stallion sperm sets a necessary foundation to initiate these studies."

The research was conducted in the labs of Drs. Terje Raudsepp and Bhanu Chowdhary , both of whom are well-known for their research in studying the horse genome, including contributions to developing whole-genome maps and obtaining the complete sequence of the horse genome. Close collaboration with theriogenologists Drs. Dickson Varner and Charles Love at the Department of Large Animal Clinical Sciences was equally critical to the success of this research.

About research at Texas A&M University: As one of the world's leading research institutions, Texas A&M is in the vanguard in making significant contributions to the storehouse of knowledge, including that of science and technology. Research conducted at Texas A&M represents an annual investment of more than $582 million, which ranks third nationally for universities without a medical school, and underwrites approximately 3,500 sponsored projects. That research creates new knowledge that provides basic, fundamental and applied contributions resulting in many cases in economic benefits to the state, nation and world.

Contact: Keith Randall, News & Information Services, at (979) 845-4644 or keith-randall@tamu.edu; or Terje Raudsepp, Department of Veterinary Integrative Biosciences, at (979) 862-2879 or TRaudsepp@cvm.tamu.edu; or Miao Jingang, News & Information Services, at miaojingang@tamu.edu. For more news about Texas A&M University, go to http://tamunews.tamu.edu.

Follow us on Twitter at http://twitter.com/tamutalk.

Keith Randall | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>