Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Termites, fungi and climate change

06.06.2014

Climate change models could have a thing or two to learn from termites and fungi, according to a new study released this week.

For a long time scientists have believed that temperature is the dominant factor in determining the rate of wood decomposition worldwide. Decomposition matters because the speed at which woody material are broken down strongly influences the retention of carbon in forest ecosystems and can help to offset the loss of carbon to the atmosphere from other sources. That makes the decomposition rate a key factor in detecting potential changes to the climate.


UCF biologist Joshua King is an expert on termites and ants.

Credit: UCF

But scientists from Yale, the University of Central Florida and SUNY Buffalo State found that fungi and termites, which help break down wood, may play a more significant role in the rate of decomposition than temperature alone.

The group's findings appear in this week's edition of the journal Nature Climate Change.

... more about:
»Termites »UCF »ants »blocks »decomposition »ecology »factor »fungi »temperature

"The big surprise of this work was the realization that the impact of organisms surpassed climate as a control of decomposition across spatial scales," said Joshua King, a biologist at UCF and co-author of the paper. "Understanding the ecology and biology of fungi and termites is a key to understanding how the rate of decomposition will vary from place to place."

So how did scientists originally come up with temperature as the main factor in decomposition? It has to do with data and math. Scientists most often construct a model based on the average decomposition rates of sites that are in close proximity to each other.

In this case, it appears that each local number matter because they reflect the activity of fungi and termites. The team suggests that scientists need to embrace the variability found across data collected from many different sites instead of averaging it all together to create better models with more accurate predictions.

The team reached this conclusion after running a 13-month experiment. They distributed 160 blocks of pine tree wood across five sub-regions of temperate forest in the eastern U.S. — from Connecticut to northern Florida — and then monitored the decay that occurred.

They selected similar forest types, hardwood deciduous forests, to focus on major differences in climate across the regional gradient. (The average annual temperature in southern New England is about 11 degrees Celsius cooler than Florida.) Within each of the five sub-regions they placed the wood blocks in different types of terrain to evaluate the effects of local versus regional factors as controls on decomposition.

"Most people would try to make sure everything was as standard as possible," said Mark A. Bradford, an assistant professor of terrestrial ecosystem ecology at the Yale School of Forestry & Environmental Studies (F&ES) and lead author of the study. "We said, 'Well, let's generate as much variation as possible.' So we put some blocks on south-facing slopes, where they would be warmer in the summer, and others on north-facing slopes where it's colder. We put some on top of ridges and others next to streams where it was wetter."

After 13 months, they measured how much wood had been lost, whether to the consumption of fungi growing on the wood or to termites consuming the wood.

According to their analysis, local-scale factors explained about three quarters of the variation in wood decomposition, while climate explained only about one quarter, contrary to the expectation that climate should be the predominant control.

"We're reaching the wrong conclusion about the major controls on decomposition because of the way we've traditionally collected and looked at our data," Bradford said. "That in turn will weaken the effectiveness of climate prediction."

The team's recommendation: collect more data at local sites and improve our understanding of how local conditions affect the organisms that drive decomposition, because they could significantly improve the effectiveness of climate change projections.

###

Co-authors of the study include: Robert J. Warren II from SUNY Buffalo State; Petr Baldrian from the Academy of Sciences of the Czech Republic; Thomas W. Crowther, Daniel S. Maynard and Emily E. Oldfield from Yale; William R. Wieder, from the National Center for Atmospheric Research in Boulder, CO and Stephen A. Wood from Columbia University.

The National Science Foundation and Yale Climate & Energy Institute funded the research.

King is an assistant professor of biology at UCF. He has multiple degrees including a Ph.D in entomology from the University of Florida, a master's degree in education from Tufts University and a bachelor's degree in biology from Tufts. He is an expert on termites and ants and his work is currently funded by the National Science Foundation to study the ecology of ants in Florida and the southern US.

Zenaida Gonzalez Kotala | Eurek Alert!

Further reports about: Termites UCF ants blocks decomposition ecology factor fungi temperature

More articles from Studies and Analyses:

nachricht Research investigates whether solar events could trigger birth defects on Earth
21.07.2015 | University of Kansas

nachricht Accounting for short-lived forcers in carbon budgets
15.07.2015 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Tool making and additive technology exhibition: Fraunhofer IPT at Formnext

31.07.2015 | Trade Fair News

First Siemens-built Thameslink train arrives in London

31.07.2015 | Transportation and Logistics

California 'rain debt' equal to average full year of precipitation

31.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>