Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Temperature Increases Causing Tropical Forests to Blossom, According to Study

10.07.2013
A new study led by Florida State University researcher Stephanie Pau shows that tropical forests are producing more flowers in response to only slight increases in temperature.

The study examined how changes in temperature, clouds and rainfall affect the number of flowers that tropical forests produce. Results showed that clouds mainly have an effect over short-term seasonal growth, but longer-term changes of these forests appear to be due to temperature.

While other studies have used long-term flower production data, this is the first study to combine these data with direct estimates of cloud cover based on satellite information.

The results of the study, “Clouds and Temperature Drive Dynamic Changes in Tropical Flower Production,” was published July 7 in the journal Nature Climate Change.

“Tropical forests are commonly thought of as the lungs of the earth and how many flowers they produce is one vital sign of their health,” said Pau, an assistant professor in Florida State’s Department of Geography. “However, there is a point at which forests can get too warm and flower production will decrease. We’re not seeing that yet at the sites we looked at, and whether that happens depends on how much the tropics will continue to warm.”

U.S. Geological Survey Senior Scientist Julio Betancourt, who was not involved in the study, described Pau’s research as “clever.”

“It integrates ground and satellite observations over nearly three decades to tease apart the influence of temperature and cloudiness on local flower production,” Betancourt said. “It confirms other recent findings that, in the tropics, even a modest warming can pack quite a punch.”

Pau led a team of international researchers who studied seasonal and year-to-year flower production in two contrasting tropical forests — a seasonally dry forest on Barro Colorado Island, Panama, and an “ever-wet” forest in Luquillo, Puerto Rico.

The seasonally dry site, according to Pau, has been producing more flowers at an average rate of 3 percent each year over the last several decades, an increase that appears to be tied to warming temperatures.

“We studied flowers because their growth is a measure of the reproductive health and overall growth of the forests, and because there is long-term data on flower production available,” Pau said.

The amount of sunlight reaching tropical forests due to varying amounts of cloud cover is an important factor, just not the most important when it comes to flower production.

“Clouds are a huge uncertainty in understanding the impacts of climate change on tropical forests,” Pau said. “Both sites still appear to respond positively to increases in light availability. Yet temperature was the most consistent factor across multiple time-scales.

“With most projections of future climate change, people have emphasized the impact on high-latitude ecosystems because that is where temperatures will increase the most,” Pau said. “The tropics, which are already warm, probably won’t experience as much of a temperature increase as high-latitude regions. Even so, we’re showing that these tropical forests are still really sensitive to small degrees of change.”

Pau conducted the research as part of the National Center for Ecological Analysis and Synthesis (NCEAS) Forecasting Phenology Working Group and with Elizabeth M. Wolkovich of the University of British Columbia’s Biodiversity Research Centre; Benjamin I. Cook of the NASA Goddard Institute for Space Studies and the Lamont-Doherty Earth Observatory; Christopher J. Nytch of the University of Puerto Rico’s Institute for Tropical Ecosystem Studies; James Regetz of the National Center for Ecological Analysis and Synthesis; Jess K. Zimmerman of the University of Puerto Rico’s Institute for Tropical Ecosystem Studies; and S. Joseph Wright of the Smithsonian Tropical Research Institute.

CONTACT: Stephanie Pau, FSU Department of Geography
(850) 644-8377; spau@fsu.edu

Stephanie Pau | Newswise
Further information:
http://www.fsu.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>