Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Temperature Increases Causing Tropical Forests to Blossom, According to Study

10.07.2013
A new study led by Florida State University researcher Stephanie Pau shows that tropical forests are producing more flowers in response to only slight increases in temperature.

The study examined how changes in temperature, clouds and rainfall affect the number of flowers that tropical forests produce. Results showed that clouds mainly have an effect over short-term seasonal growth, but longer-term changes of these forests appear to be due to temperature.

While other studies have used long-term flower production data, this is the first study to combine these data with direct estimates of cloud cover based on satellite information.

The results of the study, “Clouds and Temperature Drive Dynamic Changes in Tropical Flower Production,” was published July 7 in the journal Nature Climate Change.

“Tropical forests are commonly thought of as the lungs of the earth and how many flowers they produce is one vital sign of their health,” said Pau, an assistant professor in Florida State’s Department of Geography. “However, there is a point at which forests can get too warm and flower production will decrease. We’re not seeing that yet at the sites we looked at, and whether that happens depends on how much the tropics will continue to warm.”

U.S. Geological Survey Senior Scientist Julio Betancourt, who was not involved in the study, described Pau’s research as “clever.”

“It integrates ground and satellite observations over nearly three decades to tease apart the influence of temperature and cloudiness on local flower production,” Betancourt said. “It confirms other recent findings that, in the tropics, even a modest warming can pack quite a punch.”

Pau led a team of international researchers who studied seasonal and year-to-year flower production in two contrasting tropical forests — a seasonally dry forest on Barro Colorado Island, Panama, and an “ever-wet” forest in Luquillo, Puerto Rico.

The seasonally dry site, according to Pau, has been producing more flowers at an average rate of 3 percent each year over the last several decades, an increase that appears to be tied to warming temperatures.

“We studied flowers because their growth is a measure of the reproductive health and overall growth of the forests, and because there is long-term data on flower production available,” Pau said.

The amount of sunlight reaching tropical forests due to varying amounts of cloud cover is an important factor, just not the most important when it comes to flower production.

“Clouds are a huge uncertainty in understanding the impacts of climate change on tropical forests,” Pau said. “Both sites still appear to respond positively to increases in light availability. Yet temperature was the most consistent factor across multiple time-scales.

“With most projections of future climate change, people have emphasized the impact on high-latitude ecosystems because that is where temperatures will increase the most,” Pau said. “The tropics, which are already warm, probably won’t experience as much of a temperature increase as high-latitude regions. Even so, we’re showing that these tropical forests are still really sensitive to small degrees of change.”

Pau conducted the research as part of the National Center for Ecological Analysis and Synthesis (NCEAS) Forecasting Phenology Working Group and with Elizabeth M. Wolkovich of the University of British Columbia’s Biodiversity Research Centre; Benjamin I. Cook of the NASA Goddard Institute for Space Studies and the Lamont-Doherty Earth Observatory; Christopher J. Nytch of the University of Puerto Rico’s Institute for Tropical Ecosystem Studies; James Regetz of the National Center for Ecological Analysis and Synthesis; Jess K. Zimmerman of the University of Puerto Rico’s Institute for Tropical Ecosystem Studies; and S. Joseph Wright of the Smithsonian Tropical Research Institute.

CONTACT: Stephanie Pau, FSU Department of Geography
(850) 644-8377; spau@fsu.edu

Stephanie Pau | Newswise
Further information:
http://www.fsu.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>