Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Temperature Increases Causing Tropical Forests to Blossom, According to Study

10.07.2013
A new study led by Florida State University researcher Stephanie Pau shows that tropical forests are producing more flowers in response to only slight increases in temperature.

The study examined how changes in temperature, clouds and rainfall affect the number of flowers that tropical forests produce. Results showed that clouds mainly have an effect over short-term seasonal growth, but longer-term changes of these forests appear to be due to temperature.

While other studies have used long-term flower production data, this is the first study to combine these data with direct estimates of cloud cover based on satellite information.

The results of the study, “Clouds and Temperature Drive Dynamic Changes in Tropical Flower Production,” was published July 7 in the journal Nature Climate Change.

“Tropical forests are commonly thought of as the lungs of the earth and how many flowers they produce is one vital sign of their health,” said Pau, an assistant professor in Florida State’s Department of Geography. “However, there is a point at which forests can get too warm and flower production will decrease. We’re not seeing that yet at the sites we looked at, and whether that happens depends on how much the tropics will continue to warm.”

U.S. Geological Survey Senior Scientist Julio Betancourt, who was not involved in the study, described Pau’s research as “clever.”

“It integrates ground and satellite observations over nearly three decades to tease apart the influence of temperature and cloudiness on local flower production,” Betancourt said. “It confirms other recent findings that, in the tropics, even a modest warming can pack quite a punch.”

Pau led a team of international researchers who studied seasonal and year-to-year flower production in two contrasting tropical forests — a seasonally dry forest on Barro Colorado Island, Panama, and an “ever-wet” forest in Luquillo, Puerto Rico.

The seasonally dry site, according to Pau, has been producing more flowers at an average rate of 3 percent each year over the last several decades, an increase that appears to be tied to warming temperatures.

“We studied flowers because their growth is a measure of the reproductive health and overall growth of the forests, and because there is long-term data on flower production available,” Pau said.

The amount of sunlight reaching tropical forests due to varying amounts of cloud cover is an important factor, just not the most important when it comes to flower production.

“Clouds are a huge uncertainty in understanding the impacts of climate change on tropical forests,” Pau said. “Both sites still appear to respond positively to increases in light availability. Yet temperature was the most consistent factor across multiple time-scales.

“With most projections of future climate change, people have emphasized the impact on high-latitude ecosystems because that is where temperatures will increase the most,” Pau said. “The tropics, which are already warm, probably won’t experience as much of a temperature increase as high-latitude regions. Even so, we’re showing that these tropical forests are still really sensitive to small degrees of change.”

Pau conducted the research as part of the National Center for Ecological Analysis and Synthesis (NCEAS) Forecasting Phenology Working Group and with Elizabeth M. Wolkovich of the University of British Columbia’s Biodiversity Research Centre; Benjamin I. Cook of the NASA Goddard Institute for Space Studies and the Lamont-Doherty Earth Observatory; Christopher J. Nytch of the University of Puerto Rico’s Institute for Tropical Ecosystem Studies; James Regetz of the National Center for Ecological Analysis and Synthesis; Jess K. Zimmerman of the University of Puerto Rico’s Institute for Tropical Ecosystem Studies; and S. Joseph Wright of the Smithsonian Tropical Research Institute.

CONTACT: Stephanie Pau, FSU Department of Geography
(850) 644-8377; spau@fsu.edu

Stephanie Pau | Newswise
Further information:
http://www.fsu.edu

More articles from Studies and Analyses:

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

nachricht Pan-European study on “Smart Engineering”
30.03.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>