Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Teenage physical activity reduces risk of cognitive impairment in later life

30.06.2010
Women who are physically active at any point over the life course (teenage, age 30, age 50, late life) have lower risk of cognitive impairment in late-life compared to those who are inactive, but teenage physical activity appears to be most important. This is the key finding of a study of over nine thousand women published today in the Journal of the American Geriatrics Society.

There is growing evidence to suggest that people who are physically active in mid- and late life have lower chance of dementia and more minor forms of cognitive impairment in old age. However, there is a poorer understanding of the importance of early life physical activity and the relative importance of physical activity at different ages. Researchers led by Laura Middleton, PhD, of Sunnybrook Health Sciences Centre, Canada, compared the physical activity at teenage, age 30, age 50, and late life against cognition of 9,344 women from Maryland, Minnesota, Oregon and Pennsylvania to investigate the effectiveness of activity at different life stages.

Of the participants, 15.5%, 29.7%, 28.1%, and 21.1% reported being physically inactive at teenage, at 30 years, at 50 years, and in late life respectively; the increase in cognitive impairment for those who were inactive was between 50% and 100% at each time point. When physical activity measures for all four ages were entered into a single model and adjusted for variables such as age, education, marital status, diabetes, hypertension, depressive symptoms, smoking, and BMI, only teenage physical activity status remained significantly associated with cognitive performance in old age.

"Our study shows that women who are regularly physically active at any age have lower risk of cognitive impairment than those who are inactive but that being physically active at teenage is most important in preventing cognitive impairment," said Middleton.

The researchers also found that women who were physically inactive at teenage but became physically active at age 30 and age 50 had significantly reduced odds of cognitive impairment relative to those who remained physically inactive. In contrast, being physically active at age 30 and age 50 was not significantly associated with rates of cognitive impairment in those women who were already physically active at teenage.

Middleton added, "As a result, to minimize the risk of dementia, physical activity should be encouraged from early life. Not to be without hope, people who were inactive at teenage can reduce their risk of cognitive impairment by becoming active in later life."

The researchers concluded that the mechanisms by which physical activity across the life course is related to late life cognition are likely to be multi-factorial. There is evidence to suggest that physical activity has a positive effect on brain plasticity and cognition and in addition, physical activity reduces the rates and severity of vascular risk factors, such as hypertension, obesity, and type II diabetes, which are each associated with increased risk of cognitive impairment.

"Low physical activity levels in today's youth may mean increased dementia rates in the future. Dementia prevention programs and other health promotion programs encouraging physical activity should target people starting at very young ages, not just in mid- and late life," said Middleton.

Jennifer Beal | EurekAlert!
Further information:
http://www.wiley.com

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>