Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Teenage great white sharks are awkward biters

02.12.2010
Adolescent great white sharks may be too weak to capture and kill large marine mammals

The jaws of adolescent great white sharks may be too weak to capture and kill large marine mammals, according to a new study published in the Journal of Biomechanics by an international team of scientists.

The researchers also found that, unlike mammals, sharks can maintain high bite forces no matter how widely their jaws are open, thanks to a unique jaw muscle arrangement that has helped them to be among the most successful predators of all time.

The study is the first of its kind to use sophisticated three-dimensional computer models and advanced engineering techniques to examine how different sharks hunt and kill prey.

Detailed computer simulations examined the feeding behaviour of two threatened shark species: the harmless grey nurse – or sand tiger - and the notorious great white.

Digital models revealed that the jaws of grey nurse sharks are spring-loaded for a rapid strike on small, fast-moving fish, while those of great whites are better suited for a powerful bite on prey ranging in size from small fish to large marine mammals.

"We were surprised that although the teeth and jaws of our sub-adult great white shark looked the part and the muscles were there to drive them, the jaws themselves just couldn't handle the stress associated with big bites on big prey," says study co-author Dr Stephen Wroe, who heads the Computational Biomechanics Research Group in the UNSW School of Biological, Earth and Environmental Sciences.

The reason for this appears to be that until great whites reach a length of about 3 metres or more their jaws haven't developed enough stiff mineralised cartilage to resist the forces involved.

The 2.5 metre great white shark used for the study was caught by the NSW Bather Protection Program. "It is hard to believe, but at this size great whites are basically just awkward teenagers that can't hunt large prey very effectively," says UNSW doctoral student Toni Ferrara, the lead author of the article. "It seems paradoxical that the iconic jaws of great white sharks - made infamous by the classic Steven Spielberg movie Jaws - are actually rather vulnerable when these sharks are young. Great white sharks are not born super-predators, they take years to become formidable hunters."

Co-author Dr Vic Peddemors, of the NSW Cronulla Fisheries Research Centre of Excellence, says: "This study may also explain why many of the shark attacks off NSW are aborted after a single exploratory bite, as the great whites involved are usually juveniles that might sustain jaw injury if they persevered with the attack."

Related links:

Computational Biomechanics Research Group: http://www.compbiomech.com/

Great white shark bite force: http://www.science.unsw.edu.au/news/great-white-s-mighty-bite-revealed

NSW Bather Protection Program: http://www.dpi.nsw.gov.au/__data/assets/pdf_file/0003/357438/Shark-meshing-Primefact-October-2010.pdf

Bob Beale | EurekAlert!
Further information:
http://www.unsw.edu.au

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>