Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Teenage great white sharks are awkward biters

02.12.2010
Adolescent great white sharks may be too weak to capture and kill large marine mammals

The jaws of adolescent great white sharks may be too weak to capture and kill large marine mammals, according to a new study published in the Journal of Biomechanics by an international team of scientists.

The researchers also found that, unlike mammals, sharks can maintain high bite forces no matter how widely their jaws are open, thanks to a unique jaw muscle arrangement that has helped them to be among the most successful predators of all time.

The study is the first of its kind to use sophisticated three-dimensional computer models and advanced engineering techniques to examine how different sharks hunt and kill prey.

Detailed computer simulations examined the feeding behaviour of two threatened shark species: the harmless grey nurse – or sand tiger - and the notorious great white.

Digital models revealed that the jaws of grey nurse sharks are spring-loaded for a rapid strike on small, fast-moving fish, while those of great whites are better suited for a powerful bite on prey ranging in size from small fish to large marine mammals.

"We were surprised that although the teeth and jaws of our sub-adult great white shark looked the part and the muscles were there to drive them, the jaws themselves just couldn't handle the stress associated with big bites on big prey," says study co-author Dr Stephen Wroe, who heads the Computational Biomechanics Research Group in the UNSW School of Biological, Earth and Environmental Sciences.

The reason for this appears to be that until great whites reach a length of about 3 metres or more their jaws haven't developed enough stiff mineralised cartilage to resist the forces involved.

The 2.5 metre great white shark used for the study was caught by the NSW Bather Protection Program. "It is hard to believe, but at this size great whites are basically just awkward teenagers that can't hunt large prey very effectively," says UNSW doctoral student Toni Ferrara, the lead author of the article. "It seems paradoxical that the iconic jaws of great white sharks - made infamous by the classic Steven Spielberg movie Jaws - are actually rather vulnerable when these sharks are young. Great white sharks are not born super-predators, they take years to become formidable hunters."

Co-author Dr Vic Peddemors, of the NSW Cronulla Fisheries Research Centre of Excellence, says: "This study may also explain why many of the shark attacks off NSW are aborted after a single exploratory bite, as the great whites involved are usually juveniles that might sustain jaw injury if they persevered with the attack."

Related links:

Computational Biomechanics Research Group: http://www.compbiomech.com/

Great white shark bite force: http://www.science.unsw.edu.au/news/great-white-s-mighty-bite-revealed

NSW Bather Protection Program: http://www.dpi.nsw.gov.au/__data/assets/pdf_file/0003/357438/Shark-meshing-Primefact-October-2010.pdf

Bob Beale | EurekAlert!
Further information:
http://www.unsw.edu.au

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>