Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Are teen binge drinkers risking future osteoporosis?

13.07.2010
Loyola Study Finds that Binge Drinking Disrupts Genes Involved in Bone Formation

Binge-drinking teenagers may be putting themselves at risk for future osteoporosis and bone fractures, according to researchers at Loyola University Health System.

A new Loyola study has found long-lasting disruptions in hundreds of genes involved in bone formation in rats. The study is published in the July-August issue of the journal Alcohol and Alcoholism.

"Lifestyle-related damage done to the skeleton during young adulthood may have repercussions lasting decades," bone biologist John Callaci, PhD, and colleagues wrote.

Callaci cautioned that data from animals don't directly translate to people. "But the findings certainly suggest that this could be a problem with humans," he added.

Bone mass is lost throughout adult life as part of the aging process. Thus, anything that inhibits the build up of bone mass during the critical years of adolescence and young adulthood could increase the risk of osteoporosis and fractures in later life.

Binge drinking is defined as a woman having at least four drinks or a man having at least five drinks on one occasion. Heavy binge drinkers can consume 10 to 15 drinks. Binge drinking typically begins around age 13 and peaks between 18 and 22, before gradually decreasing. Thirty-six percent of youths ages 18 to 20 reported at least one binge-drinking episode during the past 30 days, according to the Substance Abuse and Mental Health Services Administration.

A 2008 study by Callaci and colleagues found that adolescent rats exposed to alcohol in amounts comparable to that of binge drinkers had 15 percent less bone build-up than control rats exposed to saline solution.

The new study examined the effects of binge drinking on genes. Rats received injections of alcohol that resulted in a blood alcohol level of 0.28. (By comparison, a motorist with a blood alcohol level higher than 0.08 is legally drunk.) Rats were exposed to binge amounts of alcohol on either three consecutive days (acute binge) or three consecutive days for four weeks in a row (chronic binge). They were compared to control rats who received saline.

Researchers found that about 300 bone-related genes were disrupted in rats exposed to acute binge drinking and 180 bone-related genes were disrupted in rats exposed to chronic binge drinking. In the affected genes, alcohol either increased or decreased the amount of associated RNA. (RNA serves as the template for making proteins, the building blocks of bones and other tissue.) This change in how genes are expressed disrupted molecular pathways responsible for normal bone metabolism and maintenance of bone mass.

In one of the most disturbing findings, researchers found that the gene disruption was long-lasting. Even after 30 days of sobriety, the genes still were being expressed differently. (Thirty days in a rat's lifespan is roughly equivalent to about three years in a human lifespan.)

The findings might help in the development of new drugs to minimize bone loss in alcohol abusers and in other people who are at risk for osteoporosis for other reasons.

"If we understand the mechanism of bone loss, eventually we will be able to figure out how to fix it," Callaci said.

Of course, the best way to prevent alcohol-induced bone loss is to drink moderately or not at all, Callaci said. "But when prevention doesn't work, we need other strategies to limit the damage."

Co-authors of the new study are Loyola graduate students Kristen Lauing and Phillip Roper and lab technician Ryan Himes.

The study was supported by a grant from the National Institute on Alcohol Abuse and Alcoholism.

Top
Based in the western suburbs of Chicago, Loyola University Health System is a quaternary care system with a 61-acre main medical center campus, the 36-acre Gottlieb Memorial Hospital campus and 28 primary and specialty care facilities in Cook, Will and DuPage counties. The medical center campus is conveniently located in Maywood, 13 miles west of the Chicago Loop and 8 miles east of Oak Brook, Ill. The heart of the medical center campus, Loyola University Hospital, is a 561-licensed-bed facility. It houses a Level 1 Trauma Center, a Burn Center and the Ronald McDonald® Children's Hospital of Loyola University Medical Center. Also on campus are the Cardinal Bernardin Cancer Center, Loyola Outpatient Center, Center for Heart & Vascular Medicine and Loyola Oral Health Center as well as the LUC Stritch School of Medicine, the LUC Marcella Niehoff School of Nursing and the Loyola Center for Fitness. Loyola's Gottlieb Memorial Hospital campus in Melrose Park includes the 264-bed community hospital, the Gottlieb Center for Fitness and the Marjorie G. Weinberg Cancer Care Center.

Jim Ritter | EurekAlert!
Further information:
http://www.lumc.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>