Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Are teen binge drinkers risking future osteoporosis?

13.07.2010
Loyola Study Finds that Binge Drinking Disrupts Genes Involved in Bone Formation

Binge-drinking teenagers may be putting themselves at risk for future osteoporosis and bone fractures, according to researchers at Loyola University Health System.

A new Loyola study has found long-lasting disruptions in hundreds of genes involved in bone formation in rats. The study is published in the July-August issue of the journal Alcohol and Alcoholism.

"Lifestyle-related damage done to the skeleton during young adulthood may have repercussions lasting decades," bone biologist John Callaci, PhD, and colleagues wrote.

Callaci cautioned that data from animals don't directly translate to people. "But the findings certainly suggest that this could be a problem with humans," he added.

Bone mass is lost throughout adult life as part of the aging process. Thus, anything that inhibits the build up of bone mass during the critical years of adolescence and young adulthood could increase the risk of osteoporosis and fractures in later life.

Binge drinking is defined as a woman having at least four drinks or a man having at least five drinks on one occasion. Heavy binge drinkers can consume 10 to 15 drinks. Binge drinking typically begins around age 13 and peaks between 18 and 22, before gradually decreasing. Thirty-six percent of youths ages 18 to 20 reported at least one binge-drinking episode during the past 30 days, according to the Substance Abuse and Mental Health Services Administration.

A 2008 study by Callaci and colleagues found that adolescent rats exposed to alcohol in amounts comparable to that of binge drinkers had 15 percent less bone build-up than control rats exposed to saline solution.

The new study examined the effects of binge drinking on genes. Rats received injections of alcohol that resulted in a blood alcohol level of 0.28. (By comparison, a motorist with a blood alcohol level higher than 0.08 is legally drunk.) Rats were exposed to binge amounts of alcohol on either three consecutive days (acute binge) or three consecutive days for four weeks in a row (chronic binge). They were compared to control rats who received saline.

Researchers found that about 300 bone-related genes were disrupted in rats exposed to acute binge drinking and 180 bone-related genes were disrupted in rats exposed to chronic binge drinking. In the affected genes, alcohol either increased or decreased the amount of associated RNA. (RNA serves as the template for making proteins, the building blocks of bones and other tissue.) This change in how genes are expressed disrupted molecular pathways responsible for normal bone metabolism and maintenance of bone mass.

In one of the most disturbing findings, researchers found that the gene disruption was long-lasting. Even after 30 days of sobriety, the genes still were being expressed differently. (Thirty days in a rat's lifespan is roughly equivalent to about three years in a human lifespan.)

The findings might help in the development of new drugs to minimize bone loss in alcohol abusers and in other people who are at risk for osteoporosis for other reasons.

"If we understand the mechanism of bone loss, eventually we will be able to figure out how to fix it," Callaci said.

Of course, the best way to prevent alcohol-induced bone loss is to drink moderately or not at all, Callaci said. "But when prevention doesn't work, we need other strategies to limit the damage."

Co-authors of the new study are Loyola graduate students Kristen Lauing and Phillip Roper and lab technician Ryan Himes.

The study was supported by a grant from the National Institute on Alcohol Abuse and Alcoholism.

Top
Based in the western suburbs of Chicago, Loyola University Health System is a quaternary care system with a 61-acre main medical center campus, the 36-acre Gottlieb Memorial Hospital campus and 28 primary and specialty care facilities in Cook, Will and DuPage counties. The medical center campus is conveniently located in Maywood, 13 miles west of the Chicago Loop and 8 miles east of Oak Brook, Ill. The heart of the medical center campus, Loyola University Hospital, is a 561-licensed-bed facility. It houses a Level 1 Trauma Center, a Burn Center and the Ronald McDonald® Children's Hospital of Loyola University Medical Center. Also on campus are the Cardinal Bernardin Cancer Center, Loyola Outpatient Center, Center for Heart & Vascular Medicine and Loyola Oral Health Center as well as the LUC Stritch School of Medicine, the LUC Marcella Niehoff School of Nursing and the Loyola Center for Fitness. Loyola's Gottlieb Memorial Hospital campus in Melrose Park includes the 264-bed community hospital, the Gottlieb Center for Fitness and the Marjorie G. Weinberg Cancer Care Center.

Jim Ritter | EurekAlert!
Further information:
http://www.lumc.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>