Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology may prolong the life of implanted devices, from pacemakers to chemotherapy ports

23.08.2010
By creating a unique system of blood vessels that is engineered to interact with the tissue surrounding an implanted device, the longevity and function of these devices may be better preserved, according to a study led by researchers in the University of Louisville/ Jewish Hospital's Cardiovascular Innovation Institute (CII).

The study was published early online on August 23, 2010 in the Journal of Biomedical Materials Research and was funded by the National Institutes of Health.

"One of the biggest problems with any kind of implanted device, such as pacemaker, a chemotherapy port or the glucose sensors necessary to monitor blood sugar levels in diabetic patients, is the body's natural reaction to recognize it as foreign and form a scar around it," said Stuart Williams, PhD, scientific director of the CII and a senior investigator on the study. "Scars have very little blood flow and because this connection between the body and the device is compromised, the function of the device over time can decline, threatening health and leading to additional interventions to replace it."

The researchers sought to prevent the formation of scar tissue around an implanted device by "pre-vascularizing" the device just prior to implantation. The investigators call this a microvascular construct (MVC) consisting of tiny blood vessel fragments suspended in a collagen gel. The combination of the MVC, already rich with blood vessels, and the device appears to provide an environment that resists the formation of scar tissue once the device is implanted, Williams said.

"This study built on our earlier work that showed that this material, what we call an MVC, stimulates circulation and prevents scarring when implanted in the body, in animal models," said James Hoying, PhD, director of cardiovascular therapeutics at the CII and a senior investigator on this study. "We wanted to next see if we could maintain that circulation in order to prevent scarring over the long term and thus prolong the function of any number of implanted devices."

The researchers compared the tissue surrounding a bare expanded polytetrafluoroethylene material – implanted biomaterial many devices are made of – embedded in collagen alone to one embedded in collagen and the MVC, and found that the latter both promoted and maintained circulation in the area around the implant, Williams said. Animal models were used. Collagen is a naturally occurring protein found in the flesh and connective tissue of animals and humans. It has been found to mediate the inflammatory reaction that often occurs when an implanted device interacts with surrounding tissue.

"We found that the presence of the MVCs and collagen altered the way tissue formed around the implants, restricting the formation of scar tissue because there was so much blood vessel activity," Williams said. "The presence of the MVCs and collagen also reduced the number of white blood cells that stimulate inflammation, where the device was implanted. The vessels associated with the implant were seen to be capable of sustainable blood delivery over time."

All of these factors are important in sustaining circulation and suppressing scar formation, he said.

Williams and colleagues are now working to design an operating room-compatible device that could bring this technology to patients.

"This could have implications for patients who have any number of implantable devices, from those on dialysis to patients with devices that help failing hearts to function, to those receiving chemotherapy, catheters and multiple other indications," Williams said.

Other investigators involved in this study include Gabriel Gruionu, Alice Stone, and Mark Schwartz of the University of Arizona, Tucson.

The mission of the CII is to promote research focused on combating cardiovascular disease, taking new therapies from discovery to treatment, becoming a partner in the development, testing and commercialization of breakthrough innovations and making important and lasting contributions to the practice of cardiovascular medicine.

Lauren Williams | EurekAlert!
Further information:
http://www.louisville.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>