Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technologies challenge old ideas about early hominid diets

14.10.2011
New assessments by researchers using the latest high-tech tools to study the diets of early hominids are challenging long-held assumptions about what our ancestors ate, says a study by the University of Colorado Boulder and the University of Arkansas.

By analyzing microscopic pits and scratches on hominid teeth, as well as stable isotopes of carbon found in teeth, researchers are getting a very different picture of the diet habitats of early hominids than that painted by the physical structure of the skull, jawbones and teeth.

While some early hominids sported powerful jaws and large molars -- including Paranthropus boisei, dubbed "Nutcracker Man" -- they may have cracked nuts rarely if at all, said CU-Boulder anthropology Professor Matt Sponheimer, study co-author.

Such findings are forcing anthropologists to rethink long-held assumptions about early hominids, aided by technological tools that were unknown just a few years ago. A paper on the subject by Sponheimer and co-author Peter Ungar, a distinguished professor at the University of Arkansas, was published in the Oct. 14 issue of Science.

Earlier this year, Sponheimer and his colleagues showed Paranthropus boisei was essentially feeding on grasses and sedges rather than soft fruits preferred by chimpanzees. "We can now be sure that Paranthropus boisei ate foods that no self-respecting chimpanzee would stomach in quantity," said Sponheimer. "It is also clear that our previous notions of this group's diet were grossly oversimplified at best, and absolutely backward at worst."

"The morphology tells you what a hominid may have eaten," said Ungar. But it does not necessarily reveal what the animal was actually dining on, he said.

While Ungar studies dental micro-wear -- the microscopic pits and scratches that telltale food leaves behind on teeth -- Sponheimer studies stable isotopes of carbon in teeth. By analyzing stable carbon isotopes obtained from tiny portions of animal teeth, researchers can determine whether the animals were eating foods that use different photosynthetic pathways that convert sunlight to energy.

The results for teeth from Paranthropus boisei, published earlier this year, indicated they were eating foods from the so-called C4 photosynthetic pathway, which points to consumption of grasses and sedges. The analysis stands in contrast to our closest human relatives like chimpanzees and gorillas that eat foods from the so-called C3 synthetic pathway pointing to a diet that included trees, shrubs and bushes.

Dental micro-wear and stable isotope studies also point to potentially large differences in diet between southern and eastern African hominids, said Sponheimer, a finding that was not anticipated given their strong anatomical similarities. "Frankly, I don't believe anyone would have predicted such strong regional differences," said Sponheimer. "But this is one of the things that is fun about science -- nature frequently reminds us that there is much that we don't yet understand.

"The bottom line is that our old answers about hominid diets are no longer sufficient, and we really need to start looking in directions that would have been considered crazy even a decade ago," Sponheimer said. "We also see much more evidence of dietary variability among our hominid kin than was previously appreciated. Consequently, the whole notion of hominid diet is really problematic, as different species may have consumed fundamentally different things."

While the new techniques have prompted new findings in the field of biological anthropology, they are not limited to use in human ancestors, according to the researchers. Current animals under study using the new tooth-testing techniques range from rodents and ancient marsupials to dinosaurs, said Sponheimer.

Much of Sponheimer's research on ancient hominids has been funded by the National Science Foundation.

Matt Sponheimer | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>