Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technologies challenge old ideas about early hominid diets

14.10.2011
New assessments by researchers using the latest high-tech tools to study the diets of early hominids are challenging long-held assumptions about what our ancestors ate, says a study by the University of Colorado Boulder and the University of Arkansas.

By analyzing microscopic pits and scratches on hominid teeth, as well as stable isotopes of carbon found in teeth, researchers are getting a very different picture of the diet habitats of early hominids than that painted by the physical structure of the skull, jawbones and teeth.

While some early hominids sported powerful jaws and large molars -- including Paranthropus boisei, dubbed "Nutcracker Man" -- they may have cracked nuts rarely if at all, said CU-Boulder anthropology Professor Matt Sponheimer, study co-author.

Such findings are forcing anthropologists to rethink long-held assumptions about early hominids, aided by technological tools that were unknown just a few years ago. A paper on the subject by Sponheimer and co-author Peter Ungar, a distinguished professor at the University of Arkansas, was published in the Oct. 14 issue of Science.

Earlier this year, Sponheimer and his colleagues showed Paranthropus boisei was essentially feeding on grasses and sedges rather than soft fruits preferred by chimpanzees. "We can now be sure that Paranthropus boisei ate foods that no self-respecting chimpanzee would stomach in quantity," said Sponheimer. "It is also clear that our previous notions of this group's diet were grossly oversimplified at best, and absolutely backward at worst."

"The morphology tells you what a hominid may have eaten," said Ungar. But it does not necessarily reveal what the animal was actually dining on, he said.

While Ungar studies dental micro-wear -- the microscopic pits and scratches that telltale food leaves behind on teeth -- Sponheimer studies stable isotopes of carbon in teeth. By analyzing stable carbon isotopes obtained from tiny portions of animal teeth, researchers can determine whether the animals were eating foods that use different photosynthetic pathways that convert sunlight to energy.

The results for teeth from Paranthropus boisei, published earlier this year, indicated they were eating foods from the so-called C4 photosynthetic pathway, which points to consumption of grasses and sedges. The analysis stands in contrast to our closest human relatives like chimpanzees and gorillas that eat foods from the so-called C3 synthetic pathway pointing to a diet that included trees, shrubs and bushes.

Dental micro-wear and stable isotope studies also point to potentially large differences in diet between southern and eastern African hominids, said Sponheimer, a finding that was not anticipated given their strong anatomical similarities. "Frankly, I don't believe anyone would have predicted such strong regional differences," said Sponheimer. "But this is one of the things that is fun about science -- nature frequently reminds us that there is much that we don't yet understand.

"The bottom line is that our old answers about hominid diets are no longer sufficient, and we really need to start looking in directions that would have been considered crazy even a decade ago," Sponheimer said. "We also see much more evidence of dietary variability among our hominid kin than was previously appreciated. Consequently, the whole notion of hominid diet is really problematic, as different species may have consumed fundamentally different things."

While the new techniques have prompted new findings in the field of biological anthropology, they are not limited to use in human ancestors, according to the researchers. Current animals under study using the new tooth-testing techniques range from rodents and ancient marsupials to dinosaurs, said Sponheimer.

Much of Sponheimer's research on ancient hominids has been funded by the National Science Foundation.

Matt Sponheimer | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>