Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team studies immune response of Asian elephants infected with a human disease

16.07.2014

Mycobacterium tuberculosis, the organism that causes tuberculosis in humans, also afflicts Asian (and occasionally other) elephants.

Diagnosing and treating elephants with TB is a challenge, however, as little is known about how their immune systems respond to the infection. A new study begins to address this knowledge gap, and offers new tools for detecting and monitoring TB in captive elephants.


Researchers develop new tools to detect and monitor tuberculosis in Asian elephants.

Credit: Photo courtesy of Jennifer Landolfi

The study, reported in the journal Tuberculosis, is the work of researchers at the University of Illinois Zoological Pathology Program (ZPP), a division of the veterinary diagnostic lab at the College of Veterinary Medicine in Urbana-Champaign. ZPP is based in Chicago, serving zoos and wildlife in the region and beyond.

More than 50 elephants in captivity in the U.S. have been diagnosed with tuberculosis since 1994, the research team reports. The evidence suggests that humans can transmit the disease to elephants and that elephants also may serve as a source of exposure for humans.

When infected, elephants may appear healthy or only show general symptoms, such as weight loss, that could be associated with a variety of maladies, said Jennifer Landolfi, a veterinary pathologist who led the new research. Most cases are found as a result of routine tests which involve checking the blood for antibodies against TB, or collecting samples from an elephant's trunk and culturing the bacteria it harbors.

But these approaches are problematic, Landolfi said. Culturing mycobacteria takes time and is imprecise, while antibody responses may take weeks to develop and only indicate exposure, not necessarily infection or disease.

"We are always trying to improve and seek out new diagnostics that will allow for earlier, more accurate detection of this infection," she said. "We also need to find ways to monitor the treatment response."

In humans, exposure to tuberculosis rarely results in full-fledged disease. Most people's immune systems eradicate the bacterium or at least keep the disease at bay, Landolfi said.

"Less than 10 percent of the people who are exposed actually develop the disease," she said. In those cases, an inadequate immune response is almost always to blame. "Our hypothesis is that something similar is happening in the Asian elephants."

To test this, Landolfi and her colleagues looked at protein mediators that are part of an elephant's immune system. These small signaling molecules, called cytokines (SIGH-toe-kines), spur a cascade of cellular reactions that help the body fight infection. But detecting cytokines in elephants is difficult because antibodies that target elephant cytokines are not available.

"Instead of trying to detect the cytokines using antibodies, we said, 'why don't we take a step back and detect the nucleotides that code for those proteins?'" Landolfi said. "We're talking about messenger RNA (mRNA), which is used by the cell to synthesize these proteins."

After developing the tools to detect cytokine mRNA in elephants, the researchers collected blood from 8 TB-positive and 8 TB-negative Asian elephants, and isolated the white blood cells. They exposed the cells to proteins associated with TB and then analyzed the cell culture for expression of certain cytokines.

Their analysis showed that TB-positive and TB-negative elephants differed in their immune responses after exposure to TB bacterial proteins.

"The cytokines were at higher levels in the positive animals," Landolfi said. "That suggested that those animals had more of an immune reaction when they were exposed [to proteins associated with TB] than the animals that were negative."

If confirmed in future studies, the findings suggest a faster and more reliable way to diagnose TB in captive elephants, Landolfi said. The same kinds of tests are already used in humans.

"That is something that we want to move towards with elephants," she said. "Most of the elephants don't show us a lot of signs of disease, and even when they do appear to be sick, it's very non-specific."

This makes it difficult to diagnose them and to determine if treatment is working, she said. Having a new way to monitor the elephants' immune response would improve both tasks, she said.

###

Editor's notes: To reach Jennifer Landolfi, call 708-216-1185; email landolfi@illinois.edu.

The paper, "Differences in immune cell function between tuberculosis positive and negative Asian elephants," is available online or from the U. of I. News Bureau. 

Diana Yates | University of Illinois

Further reports about: TB TuBerculosis cytokines elephants immune mRNA mycobacteria proteins

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>