Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is team science productive?

19.10.2010
Penn study measures the collaborative nature of translational medicine

Taking a cue from the world of business-performance experts and baseball talent scouts, Penn Medicine translational medicine researchers are among the first to find a way to measure the productivity of collaborations in a young, emerging institute. They published their findings the most recent issue of Science Translational Medicine.

While metrics exist to measure the contributions of individual scientists, judging the effectiveness of team science has been more challenging. Reasoning that team science produces papers and grants, first author postdoctoral fellow Michael Hughes, PhD, (now at Yale University) and colleagues measured these endpoints and analyzed them over time using network analysis, which examines a social structure made up of individuals connected by a common interdependency.

Using the numbers of publications and grants as their raw data, researchers from Penn's Institute for Translational Medicine and Therapeutics (ITMAT) measured how their productivity changed with increasing collaborations over the last five years.

... more about:
»ITMAT »Medicine »health services

"We're applying quantitative methods to evaluate the collaborative nature of academic science and medicine," says senior author John Hogenesch, PhD, associate professor of Pharmacology in the University of Pennsylvania School of Medicine. Hogenesch is also an ITMAT member and interim director of the Penn Center for Bioinformatics.

They found that the number of collaborative papers for ITMAT members doubled since 2006. They also found that researchers were more likely to collaborate within their own departments and institutions than between them. "While understandable, if the purpose of an institute is to facilitate cross-disciplinary interactions, then encouraging people to collaborate across departments and institutes is critical," says Hogenesch.

The authors concluded that studies such as these could help inform decisions about which institutes, centers, or departments are most likely to facilitate collaboration, and learn how they're doing it. This will point the way to ideas to increase cross-discipline collaborations such as trans-center grants to facilitate collaborations between departments.

"The most challenging aspect of the study was acquiring the data. At this point, we've analyzed PubMed and research grants and only for ITMAT. Ideally, we would be able to compare these metrics to those from other similar institutes including more data sources. Also, as time goes by, having downstream measures of this productivity such as literature citations and investigational new drug applications will point the way towards learning the operational rules of translational science," says Hogenesch.

Inspired by America's Pastime

First author Hughes is a baseball fan, and he realized that professional baseball has kept detailed statistics on the outcomes of every at-bat in every game for the last 100-plus years. These data provide a wealth of information to quantitatively address the traits that predict a successful baseball career, and the types and combinations of players needed to win games. By quantitatively and objectively studying performance, baseball analysts have been able to identify and exploit inefficiencies in the labor market -- highly skilled players were sometimes under-valued because of widely-held, but incorrect, assumptions. "If they're measuring performance quantitatively in baseball, shouldn't we do the same for science?," asks Hughes.

But how do investigators evaluate their performance quantitatively -- especially the scientific output of an institution comprising hundreds of active researchers, let alone comparing performance among centers and institutes with similar missions at different universities. Using ITMAT's roster of members over time, the team used network dynamics as a first step towards measuring scientific performance of cross-disciplinary institutes and centers.

ITMAT was founded in 2004 as the world's first translational medicine institute, and as of January 2009, included over 500 active investigators spanning four institutions and dozens of academic departments. "We reasoned that ITMAT's productivity could be partly measured by how it facilitates collaborations between its members," says Hogenesch.

To collect data, the team generated special data-mining programs to automatically extract publication information from PubMed. In addition, they analyzed grant proposals submitted by ITMAT faculty during the last five years and additional data from NIH Reporter. From this they quantified the number of papers and grants by ITMAT investigators over time, and how these collaborative interactions changed over time.

ITMAT's overall size and complexity grew significantly since its inception. Not only has the total number of investigators actively collaborating within ITMAT increased during this time, the average investigator has been collaborating more.

"This finding was not surprising since as the size of the network grows, the probability that two investigators would interact to co-publish papers or co-submit grants grows," explains Hogenesch. "In network-speak, the number of edges – co-published papers and grants - per node – two or more investigators - grew nearly twice as fast during the past five years, as the growth of ITMAT's membership has grown, suggesting that ITMAT's expansion increased the number of collaborations. What's more, the percentage of ITMAT investigators actively collaborating within ITMAT grew every year, with nearly two-thirds actively engaged in collaborations in 2009."

This work was supported by ITMAT through a grant from the National Center for Research Resources. John Peeler, MA, was also an author on the paper.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $3.6 billion enterprise.

Penn's School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools, and is consistently among the nation's top recipients of funding from the National Institutes of Health, with $367.2 million awarded in the 2008 fiscal year.

Penn Medicine's patient care facilities include:

The Hospital of the University of Pennsylvania – the nation's first teaching hospital, recognized as one of the nation's top 10 hospitals by U.S. News & World Report.

Penn Presbyterian Medical Center – named one of the top 100 hospitals for cardiovascular care by Thomson Reuters for six years.

Pennsylvania Hospital – the nation's first hospital, founded in 1751, nationally recognized for excellence in orthopaedics, obstetrics & gynecology, and psychiatry & behavioral health.

Additional patient care facilities and services include Penn Medicine at Rittenhouse, a Philadelphia campus offering inpatient rehabilitation and outpatient care in many specialties; as well as a primary care provider network; a faculty practice plan; home care and hospice services; and several multispecialty outpatient facilities across the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2009, Penn Medicine provided $733.5 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

Further reports about: ITMAT Medicine health services

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>