Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New targeting technology improves outcomes for patients with atrial fibrillation

19.07.2012
UCLA-UC San Diego study findings point to a doubling of success in treating the heart-rhythm disorder, which affects more than 5 million Americans

In a landmark study of atrial fibrillation, researchers from UCLA, UC San Diego and Indiana University report having found for the first time that these irregular heart rhythms are caused by small electrical sources within the heart, in the form of electrical spinning tops ("rotors") or focal beats.

Importantly, they found a way of detecting these key electrical sources and of shutting them down in minutes using a precisely targeted therapy with long-lasting results.

The team, which included cardiologists, physicists and bioengineers, reports the findings in the July 19 issue of the Journal of the American College of Cardiology as part of the CONFIRM trial (Conventional Ablation for Atrial Fibrillation With or Without Focal Impulse and Rotor Modulation).

Currently, many atrial fibrillation patients treated with standard therapies will experience a recurrence due to the difficulty of finding the arrhythmia's source. The new research will help cardiologists better target and treat arrhythmias.

The CONFIRM study examined 107 patients with atrial fibrillation who had been referred for a non-surgical catheter ablation procedure. During this procedure, doctors thread a wire with a metal-tipped catheter through the body, from a vein in the groin to the heart, to apply heat to the area of the heart producing the arrhythmia to stop it.

In one group of patients, the team used the new technique to help perform very small, precise burns — called focal impulse and rotor modulation, or FIRM — that were aimed directly at the fundamental source of the arrhythmia: the tiny electrical disturbances in the heart called focal beats or 'rotors' that look like mini-tornadoes or spinning tops. Rotors can be likened to an "eye of a storm" shown in this study to cause atrial fibrillation. Remarkably, this new procedure shut down or very significantly slowed atrial fibrillation in 86 percent of patients in an average of just 2.5 minutes.

As a comparison, conventional catheter procedures were performed in a second group of patients. Since this approach is less targeted, it involved hours of treatment over larger regions in the heart and often did not shut down the atrial fibrillation.

To track outcomes, patients received an implanted ECG monitor that very accurately assessed their heart rhythms over time. The researchers found that after two years, the FIRM-guided group had an 82.4 percent freedom from atrial fibrillation episodes, compared with only 44.9 percent freedom in the group that received standard therapy.

The new targeted method demonstrated an 86 percent improvement over the conventional method.

"We are very excited by this trial, which for the first time shows that atrial fibrillation is maintained by small electrical hotspots, where brief FIRM guided ablation can shut down the arrhythmia and bring the heart back to a normal rhythm after only minutes of ablation," said lead author Dr. Sanjiv Narayan, a professor of medicine at UC San Diego, visiting professor at the UCLA Cardiac Arrhythmia Center, and director of electrophysiology at the San Diego Veterans Affairs Medical Center.

"The results of this trial, with an 80 percent ablation success rate after a single procedure, are very gratifying," said study author Dr. Kalyanam Shivkumar, director of the UCLA Cardiac Arrhythmia Center and a professor of medicine and radiological sciences at UCLA. "This is the dawn of a new phase of managing this common arrhythmia that is mechanism-based."

The science behind this work was funded by grants to Dr. Narayan from the National Institutes of Health (NIH grant numbers: HL70529, HL83359, HL83359-S1, HL103800), including a grant awarded as part of the American Recovery and Reinvestment Act, and by the Doris Duke Charitable Foundations.

From UC San Diego: These discoveries, owned by the Regents of the University of California, were then licensed to a startup company, Topera Medical, which has recently obtained clearance from the Food and Drug Administration for the mapping system it developed from this early science, called RhythmView.

Narayan is a co-founder with equity interest in Topera. Study author Wouter-Jan Rappel from the UC San Diego Department of Theoretical Biological Physics holds equity interest in Topera. Study author Dr. Shivkumar of UCLA is an unpaid advisor to Topera. Dr. John Miller, chief of electrophysiology at Indiana University, has received modest consulting fees from Topera.

Additional study authors included Dr. David Krummen, associate professor of medicine and associate director of electrophysiology fellowship training at the UC San Diego School of Medicine and associate director of the San Diego Veterans Affairs Medical Center, and Paul Clopton from the San Diego Veterans Affairs Medical Center Department of Statistics. They have no financial disclosures.

Rachel Champeau | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>