Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New targeting technology improves outcomes for patients with atrial fibrillation

19.07.2012
UCLA-UC San Diego study findings point to a doubling of success in treating the heart-rhythm disorder, which affects more than 5 million Americans

In a landmark study of atrial fibrillation, researchers from UCLA, UC San Diego and Indiana University report having found for the first time that these irregular heart rhythms are caused by small electrical sources within the heart, in the form of electrical spinning tops ("rotors") or focal beats.

Importantly, they found a way of detecting these key electrical sources and of shutting them down in minutes using a precisely targeted therapy with long-lasting results.

The team, which included cardiologists, physicists and bioengineers, reports the findings in the July 19 issue of the Journal of the American College of Cardiology as part of the CONFIRM trial (Conventional Ablation for Atrial Fibrillation With or Without Focal Impulse and Rotor Modulation).

Currently, many atrial fibrillation patients treated with standard therapies will experience a recurrence due to the difficulty of finding the arrhythmia's source. The new research will help cardiologists better target and treat arrhythmias.

The CONFIRM study examined 107 patients with atrial fibrillation who had been referred for a non-surgical catheter ablation procedure. During this procedure, doctors thread a wire with a metal-tipped catheter through the body, from a vein in the groin to the heart, to apply heat to the area of the heart producing the arrhythmia to stop it.

In one group of patients, the team used the new technique to help perform very small, precise burns — called focal impulse and rotor modulation, or FIRM — that were aimed directly at the fundamental source of the arrhythmia: the tiny electrical disturbances in the heart called focal beats or 'rotors' that look like mini-tornadoes or spinning tops. Rotors can be likened to an "eye of a storm" shown in this study to cause atrial fibrillation. Remarkably, this new procedure shut down or very significantly slowed atrial fibrillation in 86 percent of patients in an average of just 2.5 minutes.

As a comparison, conventional catheter procedures were performed in a second group of patients. Since this approach is less targeted, it involved hours of treatment over larger regions in the heart and often did not shut down the atrial fibrillation.

To track outcomes, patients received an implanted ECG monitor that very accurately assessed their heart rhythms over time. The researchers found that after two years, the FIRM-guided group had an 82.4 percent freedom from atrial fibrillation episodes, compared with only 44.9 percent freedom in the group that received standard therapy.

The new targeted method demonstrated an 86 percent improvement over the conventional method.

"We are very excited by this trial, which for the first time shows that atrial fibrillation is maintained by small electrical hotspots, where brief FIRM guided ablation can shut down the arrhythmia and bring the heart back to a normal rhythm after only minutes of ablation," said lead author Dr. Sanjiv Narayan, a professor of medicine at UC San Diego, visiting professor at the UCLA Cardiac Arrhythmia Center, and director of electrophysiology at the San Diego Veterans Affairs Medical Center.

"The results of this trial, with an 80 percent ablation success rate after a single procedure, are very gratifying," said study author Dr. Kalyanam Shivkumar, director of the UCLA Cardiac Arrhythmia Center and a professor of medicine and radiological sciences at UCLA. "This is the dawn of a new phase of managing this common arrhythmia that is mechanism-based."

The science behind this work was funded by grants to Dr. Narayan from the National Institutes of Health (NIH grant numbers: HL70529, HL83359, HL83359-S1, HL103800), including a grant awarded as part of the American Recovery and Reinvestment Act, and by the Doris Duke Charitable Foundations.

From UC San Diego: These discoveries, owned by the Regents of the University of California, were then licensed to a startup company, Topera Medical, which has recently obtained clearance from the Food and Drug Administration for the mapping system it developed from this early science, called RhythmView.

Narayan is a co-founder with equity interest in Topera. Study author Wouter-Jan Rappel from the UC San Diego Department of Theoretical Biological Physics holds equity interest in Topera. Study author Dr. Shivkumar of UCLA is an unpaid advisor to Topera. Dr. John Miller, chief of electrophysiology at Indiana University, has received modest consulting fees from Topera.

Additional study authors included Dr. David Krummen, associate professor of medicine and associate director of electrophysiology fellowship training at the UC San Diego School of Medicine and associate director of the San Diego Veterans Affairs Medical Center, and Paul Clopton from the San Diego Veterans Affairs Medical Center Department of Statistics. They have no financial disclosures.

Rachel Champeau | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Studies and Analyses:

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>