Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeting inflammation to treat depression

04.09.2012
Researchers at Emory University have found that a medication that inhibits inflammation may offer new hope for people with difficult-to-treat depression. The study was published Sept. 3 in the online version of Archives of General Psychiatry.

"Inflammation is the body's natural response to infection or wounding, says Andrew H. Miller, MD, senior author for the study and professor of Psychiatry and Behavioral Sciences at Emory University School of Medicine. "However when prolonged or excessive, inflammation can damage many parts of the body, including the brain."

Prior studies have suggested that depressed people with evidence of high inflammation are less likely to respond to traditional treatments for the disorder, including anti-depressant medications and psychotherapy. This study was designed to see whether blocking inflammation would be a useful treatment for either a wide range of people with difficult-to-treat depression or only those with high levels of inflammation.

The study employed infliximab, one of the new biologic drugs used to treat autoimmune and inflammatory diseases such as rheumatoid arthritis and inflammatory bowel disease. A biologic drug copies the effects of substances naturally made by the body's immune system. In this case, the drug was an antibody that blocks tumor necrosis factor (TNF), a key molecule in inflammation that has been shown to be elevated in some depressed individuals.

Study participants all had major depression and were moderately resistant to conventional antidepressant treatment. Each participant was assigned either to infliximab or to a non-active placebo treatment.

When investigators looked at the results for the group as a whole, no significant differences were found in the improvement of depression symptoms between the drug and placebo groups. However, when the subjects with high inflammation were examined separately, they exhibited a much better response to infliximab than to placebo.

Inflammation in this study was measured using a simple blood test that is readily available in most clinics and hospitals and measures C-reactive protein or CRP. The higher the CRP, the higher the inflammation, and the higher the likelihood of responding to the drug.

"The prediction of an antidepressant response using a simple blood test is one of the holy grails in psychiatry," says Miller. "This is especially important because the blood test not only measured what we think is at the root cause of depression in these patients, but also is the target of the drug."

"This is the first successful application of a biologic therapy to depression," adds Charles L. Raison, MD, first author of the study. "The study opens the door to a host of new approaches that target the immune system to treat psychiatric diseases." Raison, formerly at Emory, is now associate professor in the Department of Psychiatry at the University of Arizona College of Medicine – Tucson.

The Robert W. Woodruff Health Sciences Center of Emory University is an academic health science and service center focusing on teaching, research, health care and public service.

Kathi Baker | EurekAlert!
Further information:
http://www.emory.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>