Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Targeted antibody, immune checkpoint blocker rein in follicular lymphoma

Combination therapy sparks complete responses in 52 percent of patients in clinical trial

One drug attacks tumor cells directly, the other treats the immune system by taking the brakes off T cell response. Together, they put half of the patients with relapsed follicular lymphoma into complete remission in a phase II clinical trial at The University of Texas MD Anderson Cancer Center.

"Most drugs target only the tumor, this combination is complementary, treating both the lymphoma cells directly and the T cells in a manner that activates them against cancer cells," said senior author Sattva Neelapu, M.D., Ph.D., associate professor of Lymphoma/Myeloma at MD Anderson and senior author of the paper out in The Lancet Oncology.

"The combination of the established antibody drug rituximab with the experimental drug pidilizumab so far also has a remarkably mild side effect profile," Neelapu said.

Of 29 study participants at a median follow-up of 15.4 months, 19 (66 percent) had either a complete or partial response, with 15 (52 percent) having a complete response.

There were no grade 3 or 4 adverse events, with all effects at the less serious grade 1 and 2 levels. Patients had no indicators of autoimmunity, which can be an issue in the class of drugs that blocks immune system checkpoints and activate T cells. Such mild effects are particularly important for follicular lymphoma patients, who are diagnosed with the disease at a median age of 60.

"Rituximab treatment alone usually achieves a 40 percent overall response rate and about 11 percent complete responses," Neelapu said. "And the side effect profile of the combination is about the same as rituximab alone. Adding pidilizumab greatly improves responses so far at little cost in additional side effects."

Drug targets PD-1 receptor to unleash immune response

The immune system usually recognizes and destroys abnormal cells, in addition to viral and bacterial infections, but cancer relies on immune checkpoints to evade attack. One of these is the programmed cell death 1 (PD-1) receptor, which stymies T cell function when activated by ligands highly expressed in tumor cells. Pidilizumab blocks PD-1, and like other drugs that impair immune checkpoints, should unleash T cells to attack cancer cells.

Immune checkpoint blockade was pioneered by James Allison, Ph.D., now chair of MD Anderson's Department of Immunology. He worked out the basic science of checkpoints and developed the first drug to block one. Ipilimumab (known commercially as Yervoy) blocks CTLA-4, another checkpoint.

Neelapu grew interested in checkpoint blockade after years of research developing vaccines to treat cancer. "Vaccines induce an immune response to cancer, but we don't see objective response in the tumors," Neelapu said.

Research showed PD1 is highly expressed on T cells in the bloodstream and tumors of follicular lymphoma patients and also is associated with impaired T cell function. Pidilizumab is a monoclonal antibody that targets PD1. A phase 1 trial had shown it to be safe, so Neelapu and colleagues combined it with rituximab (known commercially as Rituxan), another monoclonal antibody that hits CD20, a surface protein on immune system B cells. Follicular lymphoma is a cancer of B cells.

No dose reductions or treatment halt required

Patients had gone through 1-4 previous treatments before enrolling in the clinical trial between January 2010 and January 2012. Of 32 patients enrolled, two were ineligible to proceed and were not treated and one withdrew from the trial after one infusion of pidilizumab and received alternate treatment.

None of the 29 remaining patients received a dose reduction or discontinued treatment due to adverse events. Median progression-free survival for all patients was 18.8 months but had not been reached for the 19 responders. Median response duration for responders was 20.2 months, with only seven having disease progression as of May 2013.

The research team examined blood samples and tumor biopsies to identify possible risk factors and genes that might indicate response to treatment and survival.

Gene expression predicts progression-free survival

"Gene expression analysis of tumor samples from 18 patients before treatment showed that progression-free survival increased for patients when their gene signature included genes that are highly active during T cell response or repressed in regulatory T cells that dampen T cell activation," said Eric Davis, M.D., associate professor of Lymphoma/Myeloma and co-senior author of the paper.

The team also identified 41 genes that are more highly expressed in effector T cells with anti-tumor effects compared with follicular helper T cells, thought to have pro-tumor effects. Low expression of the 41-gene signature predicted less tumor shrinkage and shorter progression-free survival at 12.7 months. Median progression-free survival was not reached for patients with high signature expression.

"These findings indicate that patients who already have an active immune response before treatment do better on this combination," said co-first author Jason Westin, M.D., assistant professor of Lymphoma/Myeloma.

Core-needle biopsies from eight study participants after treatment showed increased expression of T cell activation genes, which was associated with longer progression-free survival.

When the researchers analyzed the 41-gene signature in 191 cases of follicular lymphoma patients treated with chemotherapy alone, it did not predict a significant difference in overall survival. It's likely, the researchers noted, that the signature only has predictive power for the combination treatment.

Randomized trial, new combinations

Since patients received only the combination therapy, the next step would be a randomized, double-blind trial comparing it to rituximab alone.

A commentary by two French oncologists also published in The Lancet Oncology noted: "The demonstration of activity in relapsing diffuse large B cell lymphomas suggests that anti-PD1 antibody therapy might have a therapeutic role in all lymphomas."

"Our findings indicate rituximab and pidilizumab together are safe and highly active in follicular lymphoma," Neelapu said. New combinations might add other checkpoint blockade drugs, such as ipilimumab, the B cell receptor inhibitor ibrutinib or lenalidomide, which also activate immune system.

Chemotherapy could be added as well, Westin said, but that would likely increase side effects.

Co-authors with Neelapu, Davis and Westin are co-lead author Fuliang Chu, Ph.D., Min Zhang, Ph.D., Luis Fayad, M.D., Larry Kwak, M.D., Nathan Fowler, M.D., Jorge Romaguera, M.D., Fredrick Hagemeister, M.D., Michelle Fanale, M.D., Felipe Samaniego, M.D., Zhiqiang Wang, Ph.D., Wencai Ma, Ph.D., and Yanli Gao, all of Lymphoma/Myeloma; Lei Feng and Veerabhadran Baladandayuthapani, Ph.D., of Biostatistics; Michael Wallace, M.D., of Interventional Radiology; Luis Vence, Ph.D., and Laszlo Radvanyi, Ph.D., of Immunology; Tariq Muzzafar, M.D., of Hematopathology: and Rinate Rotem-Yehudar, Ph.D., of Cure Tech, Yavne, Israel.

Chu, Zhang, Kwak, Wang, Ma, Vence, Radvanyi, Davis and Neelapu also are affiliated with MD Anderson's Center for Cancer Immunology Research.

This research was funded by grants from the National Cancer Institute of the National Institutes of Health (R21 CA143785, R01 CA155143) and MD Anderson's Cancer Center Support Grant from the NCI (CA16672) and an NIH Clinical and Translational Science Award (Ul1 RRO24148), the Leukemia and Lymphoma Society, and Cure Tech, which supplied pidilizumab.

Scott Merville | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>