Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tanzania study reopens debate on targeting mosquito larvae to control malaria

01.04.2009
Targeting mosquito larval populations may be an effective intervention to help control malaria in urban situations, a study published today suggests. The research, conducted in Dar es Salaam, the largest city in Tanzania, has re-opened the debate on whether malaria can be controlled with larvicides, insecticides which kill mosquitoes in their water-borne larval stages of development.

Malaria is one of the world's deadliest diseases, killing over one million people each year, mainly young children in Africa. It is caused by the malaria parasite, which is transmitted through the bites of mosquitoes.

Governments and NGOs worldwide are making a concerted effort to tackle malaria and a number of interventions exist to control its spread, including the use of insecticide-treated bed nets (ITNs), sprays and repellents. However, most interventions target adult mosquitoes, which can carry the parasite. Larvicides were used in the early twentieth century, but the successful introduction of the pesticide DDT to kill adult mosquitoes meant that larvicides fell out of favour.

Nowadays, larvicides are available which kill only mosquito larvae and are biological in nature, environmentally friendly and are safe to apply even to drinking water. These products have been used for decades in mosquito programmes all across the northern hemisphere but the major question mark which had limited their use for malaria prevention was whether their implementation could be sustainable and cost-effective in the poorest countries of Africa.

Tanzania has emphasised the widespread use of ITNs as its highest priority for controlling malaria, but recent observations suggest that in urban areas such as Dar es Salaam, mosquitoes tend to bite outdoors, making the nets slightly less effective as a control strategy than in rural areas.

In 2003, the Dar es Salaam City Council established a new Urban Malaria Control Programme which spent 3 years developing new, sustainable and affordable systems for applying microbial larvicides by mobilizing community-based teams of operators. In a pilot study to evaluate this approach, three wards of the city, covering an area of 17km2 and 128,000 inhabitants, were treated with the microbial larvicide Bacillus thuringiensis var. israelensis (Bti) over a one year period.

In a study published today in the open access journal PLoS One, an implementation team of almost 300 community-based staff led by Ms Khadija Kannady from the Dar es Salaam City Council, and a supporting team of researchers led by Wellcome Trust Research Career Development Fellow Dr Gerry Killeen, have shown that the use of larvicides to complement existing interventions appears to have had a dramatic effect in reducing malaria risk in the pilot areas.

"Malaria control programmes have traditionally focused on rural areas, where the disease is more prevalent," says Dr Killeen, from the Liverpool School of Tropical Medicine, who is based at the Ifakara Health Institute in Tanzania. "However, it's becoming clear that malaria also poses a problem in towns or cities, where we expect that over half the African population will live by 2030. In fact, it is likely that malaria is easier to control and even eliminate in these areas."

Dr Killeen and his colleagues from the Ifakara Health Institute in Tanzania, as well as Durham University, Harvard University, Swiss Tropical Institute and the Liverpool School of Tropical Medicine, found that the pilot programme achieved a 72% reduction in the prevalence of malaria infection among young children in Dar es Salaam. This dramatic reduction also proved to be highly cost-effective: an annual cost of less than US$1 per person protected, compared to US$2 per year of use of an ITN, typically by more than one person.

The study supports ongoing research in the densely populated rural highlands of western Kenya, which have also shown the effectiveness of using larvicide application as a malaria prevention measure. However, the researchers stress that larvicide is not intended to replace ITNs and other interventions, but rather should be a complementary approach.

"There is no evidence that using larvicide is a substitute for the current front-line interventions," says lead author Dr Yvonne Geissbühler from the Swiss Tropical Institute, Switzerland. "ITNs and indoor residual spraying are, and should remain, the highest priority, but using larvicide may offer a supplementary means to control or even eliminate malaria."

The programme in Dar es Salaam has already been extended to protect over 600,000 people, with lessons learned during this pilot study being translated into major improvements in the delivery system to reduce costs and improve performance. Furthermore, expansion to eventually cover the entire city is being considered at the stakeholders meeting of the US President's Malaria Initiative held in Tanzania this week and the National Malaria Control Programme has now set itself the target of setting up such programmes in five cities by 2013.

The study was supported by the Bill & Melinda Gates Foundation, Valent Biosciences Corporation, Research Triangle International, the US President's Malaria Initiative and the Wellcome Trust.

Craig Brierley | EurekAlert!
Further information:
http://www.wellcome.ac.uk

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>