Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tanzania study reopens debate on targeting mosquito larvae to control malaria

01.04.2009
Targeting mosquito larval populations may be an effective intervention to help control malaria in urban situations, a study published today suggests. The research, conducted in Dar es Salaam, the largest city in Tanzania, has re-opened the debate on whether malaria can be controlled with larvicides, insecticides which kill mosquitoes in their water-borne larval stages of development.

Malaria is one of the world's deadliest diseases, killing over one million people each year, mainly young children in Africa. It is caused by the malaria parasite, which is transmitted through the bites of mosquitoes.

Governments and NGOs worldwide are making a concerted effort to tackle malaria and a number of interventions exist to control its spread, including the use of insecticide-treated bed nets (ITNs), sprays and repellents. However, most interventions target adult mosquitoes, which can carry the parasite. Larvicides were used in the early twentieth century, but the successful introduction of the pesticide DDT to kill adult mosquitoes meant that larvicides fell out of favour.

Nowadays, larvicides are available which kill only mosquito larvae and are biological in nature, environmentally friendly and are safe to apply even to drinking water. These products have been used for decades in mosquito programmes all across the northern hemisphere but the major question mark which had limited their use for malaria prevention was whether their implementation could be sustainable and cost-effective in the poorest countries of Africa.

Tanzania has emphasised the widespread use of ITNs as its highest priority for controlling malaria, but recent observations suggest that in urban areas such as Dar es Salaam, mosquitoes tend to bite outdoors, making the nets slightly less effective as a control strategy than in rural areas.

In 2003, the Dar es Salaam City Council established a new Urban Malaria Control Programme which spent 3 years developing new, sustainable and affordable systems for applying microbial larvicides by mobilizing community-based teams of operators. In a pilot study to evaluate this approach, three wards of the city, covering an area of 17km2 and 128,000 inhabitants, were treated with the microbial larvicide Bacillus thuringiensis var. israelensis (Bti) over a one year period.

In a study published today in the open access journal PLoS One, an implementation team of almost 300 community-based staff led by Ms Khadija Kannady from the Dar es Salaam City Council, and a supporting team of researchers led by Wellcome Trust Research Career Development Fellow Dr Gerry Killeen, have shown that the use of larvicides to complement existing interventions appears to have had a dramatic effect in reducing malaria risk in the pilot areas.

"Malaria control programmes have traditionally focused on rural areas, where the disease is more prevalent," says Dr Killeen, from the Liverpool School of Tropical Medicine, who is based at the Ifakara Health Institute in Tanzania. "However, it's becoming clear that malaria also poses a problem in towns or cities, where we expect that over half the African population will live by 2030. In fact, it is likely that malaria is easier to control and even eliminate in these areas."

Dr Killeen and his colleagues from the Ifakara Health Institute in Tanzania, as well as Durham University, Harvard University, Swiss Tropical Institute and the Liverpool School of Tropical Medicine, found that the pilot programme achieved a 72% reduction in the prevalence of malaria infection among young children in Dar es Salaam. This dramatic reduction also proved to be highly cost-effective: an annual cost of less than US$1 per person protected, compared to US$2 per year of use of an ITN, typically by more than one person.

The study supports ongoing research in the densely populated rural highlands of western Kenya, which have also shown the effectiveness of using larvicide application as a malaria prevention measure. However, the researchers stress that larvicide is not intended to replace ITNs and other interventions, but rather should be a complementary approach.

"There is no evidence that using larvicide is a substitute for the current front-line interventions," says lead author Dr Yvonne Geissbühler from the Swiss Tropical Institute, Switzerland. "ITNs and indoor residual spraying are, and should remain, the highest priority, but using larvicide may offer a supplementary means to control or even eliminate malaria."

The programme in Dar es Salaam has already been extended to protect over 600,000 people, with lessons learned during this pilot study being translated into major improvements in the delivery system to reduce costs and improve performance. Furthermore, expansion to eventually cover the entire city is being considered at the stakeholders meeting of the US President's Malaria Initiative held in Tanzania this week and the National Malaria Control Programme has now set itself the target of setting up such programmes in five cities by 2013.

The study was supported by the Bill & Melinda Gates Foundation, Valent Biosciences Corporation, Research Triangle International, the US President's Malaria Initiative and the Wellcome Trust.

Craig Brierley | EurekAlert!
Further information:
http://www.wellcome.ac.uk

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>