Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taming physical forces that block cancer treatment

21.09.2012
MGH study identifies components responsible for therapy-blocking solid stress, suggests therapeutic strategies

It's a high-pressure environment within solid tumors. Abnormal blood and lymphatic vessels cause fluids to accumulate, and the uncontrolled proliferation of cancer cells within limited space leads to the buildup of what is called solid stress.

Both types of pressure can interfere with the effectiveness of anticancer treatments, but while strategies have been developed that reduce fluid pressures, little has been known about the impact of solid stress or potential ways to alleviate it. Now a Massachusetts General Hospital (MGH) research team has identified factors that contribute to solid stress within tumors, suggesting possible ways to alleviate it, and has developed a simple way to measure such pressures.

"Traditionally cancer research has focused on cancer cells and, more recently, on the biochemical microenvironment of tumors," says Rakesh Jain, PhD, director of the Steele Laboratory for Tumor Biology at MGH and senior author of the study in the Sept. 18 issue of Proceedings of the National Academy of Sciences. "Our work shows that the physical or mechanical microenvironment plays an equally important role in tumor progression and treatment resistance."

Jain and his colleagues have been leaders in understanding the impact of elevated fluid pressures that make it difficult for drugs to enter and permeate tumors. Their work showed that fluid pressures are relieved when antiangiogenesis drugs normalize the abnormal blood vessels characteristically found within solid tumors, improving the effectiveness of other anticancer therapies. But that approach can only work if vessels have not been squeezed shut by solid stress in surrounding tissues. In recent studies Jain's team showed that solid stress also increases the invasiveness of cancer cells.

The current study was designed to develop techniques that measure solid stress in tumors, to identify factors that contribute to the generation of this solid stress and to determine whether previously compressed blood vessels would open when stress-inducing components were depleted. Based on predictions from mathematical models, the MGH-based team developed a remarkably simple way to measure solid stress within tumor tissues.

In experiments using both tumors experimentally grown in mice and tumors removed from human patients, the researchers found that, when a solid tumor is cut in two, each segment begins to swell along the sliced surface, releasing stored solid stress. In contrast, when a sample of normal tissue is cut in two, the separated halves of tissue retain their size and shape (links to video files below). Measuring the extent of shape relaxation along with other mechanical properties of tumor tissue enabled calculation of the amount of solid stress within a tumor sample.

Sample of breast tumor grown in mouse expands after cutting, releasing solid stress
http://www.pnas.org/content/suppl/2012/08/29/1213353109.DCSupplemental/sm01.mov

Sample of normal mouse kidney tissue, showing no change in shape after cutting
http://www.pnas.org/content/suppl/2012/08/29/1213353109.DCSupplemental/sm02.mov
Additional experiments utilizing the newly developed technique identified several components that contribute to increased solid stress within tumors, including the proliferation not only of cancer cells but also of fibroblasts and other components of the tumor's extracellular matrix. In pancreatic tumors implanted into mice, the researchers showed that inhibition of a pathway leading to the growth of fibroblasts reduced solid stress associated with tumor growth and opened up compressed blood and lymphatic vessels, which could both relieve fluid pressure and improve the delivery of chemotherapy drugs.
The authors note that their results may explain why the use of antiangiogenesis drugs has not improved treatment of highly fibrotic tumors – including dangerous pancreatic, lung and breast cancers – and suggest that a strategy targeting both aspects of intratumor pressure should be explored. "Now that we have seen how tumors exploit physical forces to facilitate progression and treatment resistance, we need to learn how to tame these fluid and solid forces to improve treatment outcomes," says Jain, the Cook Professor of Radiation Oncology (Tumor Biology) at Harvard Medical School. "We urgently need to identify safe pharmaceutical agents that reduce solid stress and then add them judiciously to current treatments."

Co-lead authors of the PNAS paper are Triantafyllos Stylianopoulos, PhD, and John D. Martin of the Steele Laboratory. Additional co-authors are Vikash Chauhan, Saloni Jain, Benjamin Diop-Frimpong, Yves Boucher, PhD, and Lance Munn, PhD, Steele Lab; Nabeel Bardeesy, PhD, MGH Center for Cancer Research; Barbara Smith, MD, MD, and Cristina Ferrone, MD, MGH Department of Surgery; and Francis J. Horniceki, MD, PhD, MGH Orthopaedic Oncology. The study was supported by grants from the National Institutes of Health and the Department of Defense.

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $750 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine. In July 2012, MGH moved into the number one spot on the 2012-13 U.S. News & World Report list of "America's Best Hospitals."

Sue McGreevey | EurekAlert!
Further information:
http://www.massgeneral.org/

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

New type of photosynthesis discovered

18.06.2018 | Life Sciences

New ID pictures of conducting polymers discover a surprise ABBA fan

18.06.2018 | Life Sciences

The car of the future – sleeper cars and travelling offices too?

18.06.2018 | Automotive Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>