Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taming physical forces that block cancer treatment

21.09.2012
MGH study identifies components responsible for therapy-blocking solid stress, suggests therapeutic strategies

It's a high-pressure environment within solid tumors. Abnormal blood and lymphatic vessels cause fluids to accumulate, and the uncontrolled proliferation of cancer cells within limited space leads to the buildup of what is called solid stress.

Both types of pressure can interfere with the effectiveness of anticancer treatments, but while strategies have been developed that reduce fluid pressures, little has been known about the impact of solid stress or potential ways to alleviate it. Now a Massachusetts General Hospital (MGH) research team has identified factors that contribute to solid stress within tumors, suggesting possible ways to alleviate it, and has developed a simple way to measure such pressures.

"Traditionally cancer research has focused on cancer cells and, more recently, on the biochemical microenvironment of tumors," says Rakesh Jain, PhD, director of the Steele Laboratory for Tumor Biology at MGH and senior author of the study in the Sept. 18 issue of Proceedings of the National Academy of Sciences. "Our work shows that the physical or mechanical microenvironment plays an equally important role in tumor progression and treatment resistance."

Jain and his colleagues have been leaders in understanding the impact of elevated fluid pressures that make it difficult for drugs to enter and permeate tumors. Their work showed that fluid pressures are relieved when antiangiogenesis drugs normalize the abnormal blood vessels characteristically found within solid tumors, improving the effectiveness of other anticancer therapies. But that approach can only work if vessels have not been squeezed shut by solid stress in surrounding tissues. In recent studies Jain's team showed that solid stress also increases the invasiveness of cancer cells.

The current study was designed to develop techniques that measure solid stress in tumors, to identify factors that contribute to the generation of this solid stress and to determine whether previously compressed blood vessels would open when stress-inducing components were depleted. Based on predictions from mathematical models, the MGH-based team developed a remarkably simple way to measure solid stress within tumor tissues.

In experiments using both tumors experimentally grown in mice and tumors removed from human patients, the researchers found that, when a solid tumor is cut in two, each segment begins to swell along the sliced surface, releasing stored solid stress. In contrast, when a sample of normal tissue is cut in two, the separated halves of tissue retain their size and shape (links to video files below). Measuring the extent of shape relaxation along with other mechanical properties of tumor tissue enabled calculation of the amount of solid stress within a tumor sample.

Sample of breast tumor grown in mouse expands after cutting, releasing solid stress
http://www.pnas.org/content/suppl/2012/08/29/1213353109.DCSupplemental/sm01.mov

Sample of normal mouse kidney tissue, showing no change in shape after cutting
http://www.pnas.org/content/suppl/2012/08/29/1213353109.DCSupplemental/sm02.mov
Additional experiments utilizing the newly developed technique identified several components that contribute to increased solid stress within tumors, including the proliferation not only of cancer cells but also of fibroblasts and other components of the tumor's extracellular matrix. In pancreatic tumors implanted into mice, the researchers showed that inhibition of a pathway leading to the growth of fibroblasts reduced solid stress associated with tumor growth and opened up compressed blood and lymphatic vessels, which could both relieve fluid pressure and improve the delivery of chemotherapy drugs.
The authors note that their results may explain why the use of antiangiogenesis drugs has not improved treatment of highly fibrotic tumors – including dangerous pancreatic, lung and breast cancers – and suggest that a strategy targeting both aspects of intratumor pressure should be explored. "Now that we have seen how tumors exploit physical forces to facilitate progression and treatment resistance, we need to learn how to tame these fluid and solid forces to improve treatment outcomes," says Jain, the Cook Professor of Radiation Oncology (Tumor Biology) at Harvard Medical School. "We urgently need to identify safe pharmaceutical agents that reduce solid stress and then add them judiciously to current treatments."

Co-lead authors of the PNAS paper are Triantafyllos Stylianopoulos, PhD, and John D. Martin of the Steele Laboratory. Additional co-authors are Vikash Chauhan, Saloni Jain, Benjamin Diop-Frimpong, Yves Boucher, PhD, and Lance Munn, PhD, Steele Lab; Nabeel Bardeesy, PhD, MGH Center for Cancer Research; Barbara Smith, MD, MD, and Cristina Ferrone, MD, MGH Department of Surgery; and Francis J. Horniceki, MD, PhD, MGH Orthopaedic Oncology. The study was supported by grants from the National Institutes of Health and the Department of Defense.

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $750 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine. In July 2012, MGH moved into the number one spot on the 2012-13 U.S. News & World Report list of "America's Best Hospitals."

Sue McGreevey | EurekAlert!
Further information:
http://www.massgeneral.org/

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>