Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taking measure of the greenhouse effect

15.10.2010
Scientists have long known that heat-absorbing components of Earth¡¯s atmosphere, such as clouds and certain gases, prevent our planet from being an ice-covered ball.

Now, for the first time, a study comprehensively calculates the relative contributions of the components responsible for that heating, known as the greenhouse effect.

Besides clarifying an important aspect of climate science, the study also demonstrates that rising concentrations of one heat-trapping gas ¡ª carbon dioxide ¡ªleads to much more greenhouse warming than just the heat the gas absorbs directly itself.

Various studies have looked at the contributions of water vapor, carbon dioxide, and other greenhouse gases. But none had systematically estimated the contributions of each of the main players, says climate scientist Gavin Schmidt of NASA Goddard Institute for Space Studies, and lead author of the new research.

These contributions ¡°are among the most misquoted statistics in public discussions of climate change,¡± the authors write. Their study has been accepted for publication in the Journal of Geophysical Research -- Atmospheres, a journal of the American Geophysical Union.

"The existing literature is quite confused," Schmidt says. "If you ask a lot of climate scientists, straight up, 'how much of the current greenhouse effect is due to carbon dioxide?', you get all sorts of numbers."

With the new study, Schmidt says, the team is aiming to provide a single estimate for the contribution of each of the major factors, which can help cut through the confusion and serve as a reference for public discussions of climate change.

The study found that water vapor was the biggest contributor to the greenhouse effect, responsible for about 50 percent of the effect. The next biggest contributor is clouds, contributing about 25 percent of the greenhouse effect. Clouds come in various types, with high thin clouds more effective at trapping heat and lower, thicker clouds more effective at reflecting sunlight, cooling the Earth. The study focused on the heat-trapping ability of clouds.

After that comes carbon dioxide, contributing about 20 percent of the greenhouse effect. Other trace gases and aerosols contribute only about 5 percent, the study found. That includes a variety of greenhouse gases such as methane, which comes from burping livestock, irrigation, landfills and mining activities, and nitrous oxide, also known as laughing gas, which comes mainly from the decomposition of chemical fertilizers on croplands. Soot in the air also has a warming effect, making up part of this 5 percent.

Schmidt and colleagues arrived at these numbers by tweaking computer simulations of the planet, known as climate models. They did one set of tests where they subtracted each of these contributors ¡ª such as carbon dioxide ¡ª one at a time, to see how much less heat would be trapped. They also did another set of tests in which they removed all the greenhouse contributors, and then added them back individually. The numbers above are, in essence, averages of the results from these two tests.

Overall, the greenhouse effect warms the planet by about 33 degrees Celsius (60 degrees Fahrenheit), turning it from a frigid ice-covered ball with a global average temperature of about -17 degrees C (1 degree F), to the climate we have today. Heat-absorbing components contribute directly to that warmth by intercepting and absorbing energy passing through the atmosphere as electromagnetic waves. But that direct heating effect can also have secondary effects ¡ª for instance, when additional carbon dioxide raises the planet's temperature, then the air can become more humid, carrying more heat-trapping water vapor. This in turn heats the planet further, amplifying the effect of a dose of additional carbon dioxide. This is a main reason why scientists are concerned that people are rapidly raising the levels of carbon dioxide in the atmosphere.

To test increasing carbon dioxide¡¯s effect, the researchers simulated the consequences of doubling its concentration in their model. The experiment resulted in some additional greenhouse heating attributable directly to the added gas soaking up more energy, but 5 times as much of a boost in greenhouse heating overall. The researchers report that ¡°the extra net absorption by carbon dioxide has been amplified by the response of water vapor and clouds¡­.¡±

Even though methane, nitrous oxide, ozone, soot, and a variety of other factors only contribute about 5 percent of today's greenhouse effect, "you can't ignore them," Schmidt says. "Even though their contribution is small, they're changing very fast," he adds. Preventing them from adding further to the blanket of heat-trapping substances is another lever, besides cutting carbon dioxide emissions, that could fight global warming.

Schmidt collaborated on the study with Goddard Institute colleagues Reto Ruedy, Ron Miller and Andrew Lacis.

Title:
¡°Attribution of the present©day total greenhouse effect¡±

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>