Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taking measure of the greenhouse effect

15.10.2010
Scientists have long known that heat-absorbing components of Earth¡¯s atmosphere, such as clouds and certain gases, prevent our planet from being an ice-covered ball.

Now, for the first time, a study comprehensively calculates the relative contributions of the components responsible for that heating, known as the greenhouse effect.

Besides clarifying an important aspect of climate science, the study also demonstrates that rising concentrations of one heat-trapping gas ¡ª carbon dioxide ¡ªleads to much more greenhouse warming than just the heat the gas absorbs directly itself.

Various studies have looked at the contributions of water vapor, carbon dioxide, and other greenhouse gases. But none had systematically estimated the contributions of each of the main players, says climate scientist Gavin Schmidt of NASA Goddard Institute for Space Studies, and lead author of the new research.

These contributions ¡°are among the most misquoted statistics in public discussions of climate change,¡± the authors write. Their study has been accepted for publication in the Journal of Geophysical Research -- Atmospheres, a journal of the American Geophysical Union.

"The existing literature is quite confused," Schmidt says. "If you ask a lot of climate scientists, straight up, 'how much of the current greenhouse effect is due to carbon dioxide?', you get all sorts of numbers."

With the new study, Schmidt says, the team is aiming to provide a single estimate for the contribution of each of the major factors, which can help cut through the confusion and serve as a reference for public discussions of climate change.

The study found that water vapor was the biggest contributor to the greenhouse effect, responsible for about 50 percent of the effect. The next biggest contributor is clouds, contributing about 25 percent of the greenhouse effect. Clouds come in various types, with high thin clouds more effective at trapping heat and lower, thicker clouds more effective at reflecting sunlight, cooling the Earth. The study focused on the heat-trapping ability of clouds.

After that comes carbon dioxide, contributing about 20 percent of the greenhouse effect. Other trace gases and aerosols contribute only about 5 percent, the study found. That includes a variety of greenhouse gases such as methane, which comes from burping livestock, irrigation, landfills and mining activities, and nitrous oxide, also known as laughing gas, which comes mainly from the decomposition of chemical fertilizers on croplands. Soot in the air also has a warming effect, making up part of this 5 percent.

Schmidt and colleagues arrived at these numbers by tweaking computer simulations of the planet, known as climate models. They did one set of tests where they subtracted each of these contributors ¡ª such as carbon dioxide ¡ª one at a time, to see how much less heat would be trapped. They also did another set of tests in which they removed all the greenhouse contributors, and then added them back individually. The numbers above are, in essence, averages of the results from these two tests.

Overall, the greenhouse effect warms the planet by about 33 degrees Celsius (60 degrees Fahrenheit), turning it from a frigid ice-covered ball with a global average temperature of about -17 degrees C (1 degree F), to the climate we have today. Heat-absorbing components contribute directly to that warmth by intercepting and absorbing energy passing through the atmosphere as electromagnetic waves. But that direct heating effect can also have secondary effects ¡ª for instance, when additional carbon dioxide raises the planet's temperature, then the air can become more humid, carrying more heat-trapping water vapor. This in turn heats the planet further, amplifying the effect of a dose of additional carbon dioxide. This is a main reason why scientists are concerned that people are rapidly raising the levels of carbon dioxide in the atmosphere.

To test increasing carbon dioxide¡¯s effect, the researchers simulated the consequences of doubling its concentration in their model. The experiment resulted in some additional greenhouse heating attributable directly to the added gas soaking up more energy, but 5 times as much of a boost in greenhouse heating overall. The researchers report that ¡°the extra net absorption by carbon dioxide has been amplified by the response of water vapor and clouds¡­.¡±

Even though methane, nitrous oxide, ozone, soot, and a variety of other factors only contribute about 5 percent of today's greenhouse effect, "you can't ignore them," Schmidt says. "Even though their contribution is small, they're changing very fast," he adds. Preventing them from adding further to the blanket of heat-trapping substances is another lever, besides cutting carbon dioxide emissions, that could fight global warming.

Schmidt collaborated on the study with Goddard Institute colleagues Reto Ruedy, Ron Miller and Andrew Lacis.

Title:
¡°Attribution of the present©day total greenhouse effect¡±

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>