Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Why tackling appetite could hold the key to preventing childhood obesity

A heartier appetite is linked to more rapid infant growth and to genetic predisposition to obesity, according to two papers published in JAMA Pediatrics today (Monday).

The studies investigated how weight gain is linked to two key aspects of appetite, namely lower satiety responsiveness (a reduced urge to eat in response to internal 'fullness' signals) and higher food responsiveness (an increased urge to eat in response to the sight or smell of nice food).

The first paper reveals that infants with a heartier appetite grew more rapidly up to age 15 months, potentially putting them at increased risk for obesity.

The authors used data from non-identical, same-sex twins born in the UK in 2007. Twin pairs were selected that differed in measures of satiety responsiveness (SR) and food responsiveness (FR) at 3 months, and their growth up to age 15 months was compared. Within pairs, the infant who was more food responsive or less satiety responsive grew faster than their co-twin.

The more food responsive twin was 654g heavier (1.4lbs) than their co-twin at six months and 991g heavier (2.1lbs) at 15 months. The less satiety responsive twin was 637g heavier (1.4lbs) than their co-twin at six months and 918g heavier (2lbs) at 15 months.

"Obesity is a major issue in child health" says Professor Jane Wardle, lead author of the study from the UCL Health Behaviour Research Centre. "Identifying factors that promote or protect against weight gain could help identify targets for obesity intervention and prevention in future. These findings are extremely powerful because we were comparing children of the same age and same sex growing up in the same family in order to reveal the role that appetite plays in infant growth.

"It might make life easy to have a baby with a hearty appetite, but as she grows up, parents may need to be alert for tendencies to be somewhat over-responsive to food cues in the environment, or somewhat unresponsive to fullness. This behaviour could put her at risk of gaining weight faster than is good for her."

The second JAMA Pediatrics paper, in collaboration with King's College London, sheds further light on the way that appetite, particularly low satiety responsiveness, acts as one of the mechanisms underlying genetic predisposition to obesity.

The researchers accessed data from 2,258 10-year-old children born in the UK between 1994 and 1996. The team created a polygenic obesity risk score (PRS) for each child to estimate their genetic susceptibility to obesity, by adding up the number of higher-risk alleles from 28 obesity-related genes. Higher PRS scores indicated a higher genetic predisposition to obesity.

The PRS scores were then examined to determine the correlation with the children's satiety responsiveness and adiposity (body fatness).

"As expected, we found that children with a higher PRS score (more obesity-risk' genetic variants) were likely to have larger BMI and waist circumference," says Dr Clare Llewellyn, lead author from the UCL Health Behaviour Research Centre. "But more importantly, we also found that these children were more likely to have low satiety responsiveness.

"This suggests that satiety sensitivity could be targeted for pharmacological and behavioural interventions, to prevent or treat obesity. For example, children with lower satiety sensitivity could be taught techniques that might improve their fullness signals when eating, such as slowing their eating speed. Another approach might be to provide better advice to parents and children about appropriate portion sizes, limiting access to 'second helpings' and ensuring tempting treats are out of sight between meals."

Notes to editors:

If you would like to speak to one of the researchers, please contact David Weston in the UCL Press Office on +44 (0) 203 108 3844 (out of hours 07917 271 364) or

Links to full journal papers:

•JAMA Pediatrics. Published online February 17, 2014. doi:10.1001/jamapediatrics.2013.4951. Available pre-embargo to the media at

•JAMA Pediatrics. Published online February 17, 2014. doi:10.1001/jamapediatrics.2013.4944. Available pre-embargo to the media at

About UCL (University College London)

Founded in 1826, UCL was the first English university established after Oxford and Cambridge, the first to admit students regardless of race, class, religion or gender and the first to provide systematic teaching of law, architecture and medicine. We are among the world's top universities, as reflected by our performance in a range of international rankings and tables. According to the Thomson Scientific Citation Index, UCL is the second most highly cited European university and the 15th most highly cited in the world. UCL has nearly 27,000 students from 150 countries and more than 9,000 employees, of whom one third are from outside the UK. The university is based in Bloomsbury in the heart of London, but also has two international campuses – UCL Australia and UCL Qatar. Our annual income is more than £800 million. | Follow us on Twitter @uclnews | Watch our YouTube channel

David Weston | EurekAlert!
Further information:

Further reports about: Health Behaviour UCL YouTube genetic predisposition health services

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>