Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New system helps explain salmon migration

11.01.2010
Case study: Juvenile Salmon Acoustic Telemetry System detected 98 percent of tagged fish

A new acoustic telemetry system tracks the migration of juvenile salmon using one-tenth as many fish as comparable methods, suggests a paper published in the January edition of the American Fisheries Society journal Fisheries. The paper also explains how the system is best suited for deep, fast-moving rivers and can detect fish movement in more places than other tracking methods.

The Juvenile Salmon Acoustic Telemetry System (JSATS) estimated the survival of young, ocean-bound salmon more precisely than the widely used Passive Integrated Transponder (PIT) tags during a 2008 study on the Columbia and Snake rivers, according to the results of a case study discussed in the paper. The paper also concludes that fish behavior is affected least by light-weight JSATS tags compared to larger acoustic tags.

"Fisheries managers and researchers have many technologies to choose from when they study fish migration and survival," said lead author Geoff McMichael of the Department of Energy's Pacific Northwest National Laboratory.

"JSATS was specifically designed to understand juvenile salmon passage and survival through the swift currents and noisy hydroelectric dams on the Columbia River," McMichael continued. "But other systems might work better in different circumstances. This paper demonstrates JSATS' strengths and helps researchers weigh the pros and cons of the different fish tracking methods available today."

Scientists at PNNL and the U.S. Army Corps of Engineers' Portland District co-authored the paper. PNNL and NOAA Fisheries began developing JSATS for the Corps in 2001.

JSATS is an acoustic telemetry system that includes the smallest available acoustic transmitting tag, which weighs 0.43 grams. Its battery-powered tags are surgically implanted into juvenile salmon and send a uniquely coded signal every few seconds. Receivers are strategically placed in waterways to record the signal and track when and where tagged fish travel. A computer system also calculates the precise 3-D position of tagged fish using data gathered by the receivers.

PIT tags are also implanted into juvenile salmon for migration and survival studies, but don't use batteries to actively transmit signals. Instead, PIT tags send signals when they become energized while passing by PIT transceiver antennas.

For the paper's case study, researchers implanted 4,140 juvenile Chinook salmon with both JSATS and PIT tags. They also placed just PIT tags inside another 48,433 juveniles. All of the case study's tagged fish were released downstream of Lower Granite Dam on the Snake River in April and May 2008.

A significantly greater percentage of JSATS tags were detected than PIT tags, the case study demonstrated. For example, about 98 percent of JSATS-tagged fish were detected at Ice Harbor Dam on the Snake River. About 13 percent of PIT-tagged fish were detected in the same stretch of river. As a result, studies using JSATS require using roughly one-tenth as many fish as those employing PIT tags, which helps further conserve the salmon population.

Survival estimates were similar between JSATS and PIT tags. Forty-eight percent of the JSATS-tagged fish were estimated to have survived migration between Lower Granite Dam and Bonneville Dam, which is the last dam on the Columbia before the Pacific Ocean. For PIT-tagged fish, 43 percent were estimated to have reached the same area.

Having flexibility in where receivers can be placed is advantageous, the authors reported. JSATS receivers can be located in both rivers and dams, while PIT antennas usually can only go inside fish bypasses at dams. Researchers can estimate fish survival for an entire river system when receivers are placed in more locations, the paper explains.

The team also compared JSATS' technical features with those of another acoustic telemetry system, the VEMCO system being used for the Pacific Ocean Shelf Tracking (POST) project along North America's West Coast. The VEMCO system is best suited for use in the slow-moving, open ocean when observing small numbers of large fish, the authors wrote. In contrast, JSATS was developed to study the migration of larger quantities of small juvenile fish in fast-moving rivers.

A key difference between the JSATS and VEMCO systems is dry tag weight. JSATS tags weigh 0.43 grams and are the smallest acoustic tags available. VEMCO tags that have been used in Columbia River juvenile salmon weighed 3.1 grams. Previous research shows fish can bear a tag that weighs up to 6.7 percent of their body weight without significant adverse survival effects. That means JSATS tags can be implanted into fish as light as 6.5 grams, while VEMCO tags should be used in fish that weigh no less than 46.3 grams.

Another advantage of JSATS is that it is non-proprietary and available for anyone to manufacture or use. Because several companies have been able to competitively bid for the opportunity to produce the system's components, its cost has dropped in recent years. JSATS tags, for example, have gone from $300 per tag in 2005 to $215 in 2008. And JSATS tags cost $40 to $135 less than other commercially available acoustic tags in 2008. Proprietary interests have hindered the development of acoustic telemetry equipment in certain areas, the team wrote.

"JSATS has helped us get a clearer, more complete picture of how salmon migrate and survive through the Columbia and Snake rivers to the Pacific Ocean," McMichael said. "But we're continuing to develop JSATS and hope others will find it useful in studies of other aquatic animals. There's an opportunity for all aquatic telemetry technologies to be improved."

REFERENCE: G.A. McMichael, M.B. Eppard, T.J. Carlson, J.A. Carter, B.D. Ebberts, R.S. Brown, M. Weiland, G.R. Ploskey, R.A. Harnish and Z.D. Deng. "The Juvenile Salmon Acoustic Telemetry System: A New Tool." Fisheries, Vol. 35, No. 1, January 2010. The report starts on page 9 of the full January issue, which is online at www.fisheries.org/afs/docs/fisheries/fisheries_3501.pdf.

More JSATS information is available online at http://jsats.pnl.gov.

Pacific Northwest National Laboratory is a Department of Energy Office of Science national laboratory where interdisciplinary teams advance science and technology and deliver solutions to America's most intractable problems in energy, national security and the environment. PNNL employs 4,250 staff, has a $918 million annual budget, and has been managed by Ohio-based Battelle since the lab's inception in 1965. Follow PNNL on Facebook, Linked In and Twitter.

Franny White | EurekAlert!
Further information:
http://www.pnl.gov

Further reports about: Fisheries JSATS PIT PNNL Pacific Ocean Pacific coral Snake Telemetry VEMCO acoustic acoustic telemetry

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>